Cockpit instrument panel systems and methods with redundant...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Aeronautical vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S004000, C701S014000, C244S00100R, C244S075100, C340S945000, C340S971000

Reexamination Certificate

active

06832138

ABSTRACT:

COPYRIGHT NOTICE/PERMISSION
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the screen layouts, and data as described below and in the drawings hereto: Copyright © 2001, Garmin Corporation., All Rights Reserved.
FIELD OF THE INVENTION
The present invention relates generally to cockpit instrument panel systems and methods of presenting cockpit instrument data. In particular, the present invention is directed to cockpit instrument panel systems and methods with redundant flight data display.
BACKGROUND OF THE INVENTION
Modern commercial/private aircraft, as well as older aircraft, include a myriad of instrumentation panels having controls and displays used to present information related to the controls. The controls and the displays are operated, viewed, and interpreted by a pilot during flight of an aircraft. Examples of the controls and displays employed by a pilot in piloting the aircraft include an altimeter, an airspeed indicator, a horizontal situation indicator, an attitude indicator, and the like. Other controls are used to permit radio communication with other pilots in the air or with air traffic controllers during flight. Still more controls are used to assist in navigation. In recent years these controls include controls for Global Positioning Systems (GPS) associated with satellite technology. Furthermore, transponder controls permit the aircraft to be uniquely identified and the aircraft's altitude communicated to air traffic controllers during flight.
For a neophyte, the quantity of controls, inputs, and display panels contained within the cockpit of an aircraft are daunting. Even experienced pilots/users must stay focused to interpret information presented on various displays throughout the cockpit and often must switch between the use of alternate hands during flight to access various controls and control inputs within the cockpit. As a result, pilots/users must continually scan a plurality of available displays for vital information at any particular moment in time during flight.
The Federal Aviation Administration has promulgated regulations requiring that some controls have backup controls and have backup presentation on multiple displays within the cockpit in the event a primary control or display, presenting any setting data associated with the controls, should fail during flight. Backup is especially important for communication controls, navigational controls, and equipment controls or instruments, as well as the instrument displays which present data associated with these controls and instruments, since these controls and instrument displays vitally assist a pilot during flight. This data associated with these controls and instruments includes the flight information data a pilot needs for flight. Flight information data must have redundancy in the cockpit. By way of example, but not by way of limitation, the flight information data generally needed by the pilot includes attitude, airspeed, and altitude. As used herein, the term attitude is used to describe the orientation of an aircraft above the earth. That is, the attitude describes whether the aircraft is pitched or banked whereas altitude provides the height or distance of the aircraft above the earth.
Conventionally, the redundancy for flight information data is provided by different systems. For example, general aviation aircraft typically can include a vacuum system and an electrical system. Airspeed is typically measured using a pitot tube and displayed to the pilot on a readout dial. If the pitot tube becomes clogged with ice it can no longer provide data on the aircrafts airspeed. However, conventionally there is still enough information provided by other instruments which run off of the electrical system or a function of the vacuum system to determine the airspeed in another manner. Vice versa, if the electrical system failed, then the vacuum system can provide enough information to determine the airspeed of the aircraft in an alternate fashion. Thus, single point failures are avoided.
As another example, if the aircraft's attitude indicator failed, the pilot would lose pitch and roll data. However, the pilot would still be able to indirectly derive roll information from the aircraft's turn coordinator. Thus, in this instance too, the aircraft has a sort of built-in, back-up instrumentation. Described another way, if everything is functioning properly, the pilot can get certain information from certain instruments. And, when certain instruments fail, the pilot can get an indication of flight information data, such as attitude, from instrumentation associated with a different system.
In recent years, multifunction displays (MFDs) have been developed for use within the cockpit of an aircraft. Such MFDs generally contain a single display screen which provides flight data and other information associated with select aircraft instrument or input controls. Often, however, the select aircraft input controls are not integrated into a bezel surrounding the MFD, and sometimes such input controls are not even located in near proximity to the MFD. And, some MFDs only provide data associated with those select aircraft input controls. Correspondingly, the pilot/user still must manage a myriad of displays, controls, and control inputs located at various locations throughout the cockpit. Additionally, data presented within any one display is not necessarily well organized and structured to provide a meaningful integrated presentation to the pilot/user. In other words, within a single MFD related flight information data may not be logically grouped within like regions on the display, such that a single glance at the display would provide the pilot/user with all the desired data at any desired moment.
Further to the discussion above, with the migration toward MFDs which attempt to display flight information data, the MFD has become a source of single point failure. That is, if all of the flight information data is provide to a single LCD or other display, that very display becomes the single point failure when the display goes down.
Some have attempted to overcome this problem by providing a smaller, separate display. However, the confines of the smaller display present the flight information in a different size, format, perspective, and location which requires a mental adjustment by the pilot to acclimate to the new display configuration. Thus, this approach meets the requirements promulgated by the FAA, but does not afford the pilot a quick reference, user intuitive backup for the flight information data when the MFD fails.
Existing cockpit control systems and cockpit instrument displays do not provide seamless integration with respect to communication controls, navigational controls, and equipment controls or instruments, or for the instrument displays which present data associated with these controls and instruments. As a result, the pilot is forced to visually or manually switch to alternate instrument displays and controls in the event of a control or an instrument display failure. Further, the pilot is often forced to view scattered, multiple instrument displays to obtain all the relevant flight information data associated with the controls or instruments. And, the scattered, multiple instrument displays each present data in varying size, formats, and perspectives which require some degree of mental acclimation or adjustment to interpret.
Therefore, there exists a need for a better integrated and backup cockpit control systems and instrument display within the cockpit, which permits the pilot to more rapidly acquire and process flight information data from central locations. Moreover, there exists a need for better backup and redundancy in the pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cockpit instrument panel systems and methods with redundant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cockpit instrument panel systems and methods with redundant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cockpit instrument panel systems and methods with redundant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.