Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension
Reexamination Certificate
1998-12-30
2001-11-20
Zimmerman, Mark (Department: 2671)
Computer graphics processing and selective visual display system
Computer graphics processing
Three-dimension
C701S014000
Reexamination Certificate
active
06320579
ABSTRACT:
FIELD OF THE INVENTION
The present invention is generally related to aircraft displays including a primary flight display (PFD) utilized in the cockpit of an aircraft, and more particularly to a primary flight display rendering visual symbology indicative of aircraft position relative to vertical reference plains. The reference plain can be horizontal, to represent a fixed altitude or a set of altitude references or at a fixed angle above or below horizontal to represent a climbing or descending plane.
BACKGROUND OF THE INVENTION
Commercial and military aircraft are provided with a variety of cockpit instrumentation. This instrumentation includes navigation equipment, radios, gauges, flight computers and CRT displays suited to control the aircraft and provide situational awareness of the aircraft to the pilot during flight. One type of display data is vertical aircraft position relative to barometric altitude or a vertical flight path relative to a ground reference point (runway threshold) or predefined waypoint. Conventional flight displays typically provide pilots with representations of old technology mechanical indicators such as pointers on a dial or scale or a moving tape display. There is a desire to improve aircraft situational awareness through the use of intuitive altitude and vertical path error displays. The improved situational awareness is important for both manual control flight, and also for autopilot coupled flight. By providing the pilot improved situational awareness, the ability to monitor the flight controls and respond to a problem is much better, and consequently, the operational safety of the aircraft can be improved.
SUMMARY OF THE INVENTION
The present invention achieves technical advantages as an aviation primary flight display displaying 3-dimensional (3D) symbology indicative of the aircraft situation, including altitude and vertical path error displays. The symbology includes both a 3D vertical path error symbol, and a 3D altitude ladder. These symbols allow the pilot to intuitively and quickly ascertain the aircraft's situation with respect to a glideslope and target altitude. The vertical path error display is referenced to a ground reference navigation source, such as a glideslope beacon located at the approach end of a runway, while the 3D altimeter is referenced to an altitude source and target data. The 3D path error symbology indicates if the aircraft is above or below the glideslope. The 3D vertical path error symbology improves situational awareness by allowing the pilot to directly observe the flight path angle and make adjustments accordingly.
The present invention comprises an aviation display for an aircraft including a device for receiving at least one input signal indicative of the aircraft situation and responsively providing situation signals. The display further comprises a display device receiving the situation signals and generating a 3D visual display including 3D symbology indicative of the aircraft situation. The 3D symbology includes a 3D path error symbol which is referenced to a ground reference navigation source symbology and is indicative of a vertical path error of the aircraft. The 3D vertical path error symbology preferably includes at least one triangular wedge-shape symbol tapering towards the ground path navigation source. Preferably, the 3D vertical path error symbology includes a pair of opposing triangular symbols each tapering towards the ground reference navigation source. The pair of opposing triangular symbols are interconnected by symbology indicative of a roll of the aircraft. In addition, the pair of opposing triangular symbols are interconnected by symbology that is indicative of aircraft pitch.
The visual display further generates symbology indicative of an attitude of the aircraft, wherein this attitude symbology preferably comprises an attitude sphere. The 3D visual display further includes 3D altitude symbology indicative of the aircraft altitude relative to a desired altitude. This 3D altitude symbology comprises triangular symbols tapering towards points at the given altitude at an infinite distance in front of the aircraft.
The aviation display merges the attitude sphere, the horizontal situation display, the vertical deviation display, and a lateral deviation display into a 3D image and includes superimposed flight path vector symbols onto this image. The 3D symbology provides a significant improvement in situational awareness of the aircraft position relative to ground reference navigation sources, and provides an indication of the instantaneous flight path and flight path velocity. This 3D display enhances situational awareness allowing pilots to control the aircraft more accurately, and to more easily monitor the performance of the automatic flight control system. The display combines the 3D lateral and vertical deviation displays with attitude, altitude, and heading to provide a single integrated view of the flight path situation.
REFERENCES:
patent: 4967363 (1990-10-01), Bonafe
patent: 5745863 (1998-04-01), Uhlenhop et al.
patent: 5798713 (1998-08-01), Viebahn et al.
Snyder Mark I.
Wilkens Dean R.
Honeywell International , Inc.
Sealey Lance W.
Zimmerman Mark
LandOfFree
Cockpit display having 3D flight path error symbology does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cockpit display having 3D flight path error symbology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cockpit display having 3D flight path error symbology will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2616234