Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element
Reexamination Certificate
1999-05-20
2002-07-02
Metjahic, Safet (Department: 2858)
Electricity: measuring and testing
Fault detecting in electric circuits and of electric components
Of individual circuit component or element
C324S754090, C324S755090, C324S758010
Reexamination Certificate
active
06414504
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the automatic testing of high frequency or high speed printed digital circuit boards and of components mounted on such boards, and more particularly to a matched impedance translator fixture used to translate test signals from a test analyzer to such circuit boards or components.
BACKGROUND OF THE INVENTION
Automatic test equipment for checking printed circuit boards has long involved use of a “bed of nails” test fixture or interconnect in which the circuit board is mounted during testing. This test fixture includes a large number of nail-like spring-loaded test probes arranged to make electrical contact under spring pressure with designated test points on the circuit board under test, also referred to as the unit under test or “UUT.” Any particular circuit laid out on a printed circuit board is likely to be different from other circuits, and consequently, the bed of nails arrangement for contacting test points in the board must be customized for that particular circuit board. When the circuit to be tested is designed, a pattern of test points to be used in checking is selected, and a corresponding array of test probes is configured in the test fixture. This typically involves drilling a pattern of holes in a probe plate to match the customized array of test probes and then mounting the test probes in the drilled holes on the probe plate forming a compliant test interface or probe field. The circuit board is then mounted in the fixture superimposed on the array of test probes. During testing, the spring-loaded probes are brought into spring-pressure contact with the test points on the circuit board under test. Electrical test signals are then transferred from the board to the test probes and then to the exterior of the fixture for communication with a high speed electronic test analyzer which detects continuity or lack of continuity between various test points in the circuits on the board.
A typical class of test fixtures is the so called “grid type” class of test fixtures in which the random pattern of test points on the board are contacted by translator pins which transfer test signals to interface pins arranged in a grid pattern in a receiver. A typical grid fixture includes a grid type of compliant test interface or probe field which typically includes equidistantly spaced openings forming a predetermined pattern. This type of compliant test interface because of its predetermined pattern of openings forming a grid is commonly referred to as a grid or grid base. The grid-type test fixture contains test electronics with a huge number of switches connecting test probes fitted in the grid base openings to corresponding test circuits in the electronic test analyzer. In one embodiment of a grid tester as many as 40,000 switches are used. When testing a bare board on such a tester, a translator fixture supports translator pins that communicate between a grid pattern of test probes in a grid base and an off-grid pattern of test points on the board under test. In one prior art grid fixture so-called “tilt pins” are used as the translator pins. The tilt pins are straight solid pins mounted in corresponding pre-drilled holes in translator plates which are part of the translator fixture. The tilt pins can tilt in various orientations to translate separate test signals from the off-grid random pattern of test points on the UUT to the grid pattern of test probes in the grid base.
Other types of test fixtures include test fixtures that are not of the “grid type.” These fixtures incorporate a compliant test interface having openings in pattern different from the standard grid patterns. For example, the openings may not be equidistantly or uniformly spaced forming “off-grid patterns.” Tilt pins are used with these fixtures to translate the test signals from the off-grid pattern on the compliant test interface to the off-grid pattern on the UUT. The off-grid pattern on the UUT is different from the off-grid pattern on the compliant test interface. Typically, the spacing between test points on the UUT may be shorter than the spacing between corresponding probes on the compliant test interface.
A recent approach uses a translator pin retention system for a translator fixture for a printed circuit board tester having a pattern of test probes facing away from a base plate upon which the translator fixture is mounted. The fixture comprises a plurality of essentially parallel and spaced apart translator plates having patterns of preformed holes for containing and supporting translator pins extending through the plates of the translator fixture for use in translating test signals between test points on a printed circuit board supported by the fixture and the probes on the base of the tester. A thin, flexible pin retention sheet comprising an elastomeric material is positioned above a surface of one of the translator plates so that the translator pins carried by the translator fixture extend through the pin retention sheet. The elastomeric pin retention sheet naturally applies a compression force around the translator pins. This compression force retains the pins in the fixture when the fixture is lifted or turned upside down. The compression force acting on the pins allows the pins to move with the retention sheet independently of the other pins and the translator plates of the fixture. This essentially avoids drag forces or any restriction to compliant axial movement of the pins within the fixture. Such a pin retention sheet is described, for example, in U.S. Pat. No. 5,493,230, which is incorporated herein by this reference.
Testing of high frequency or high speed digital UUTs requires that the impedance of the test source (i.e., the test source providing the electrical signals) is matched to the impedance of the load (i.e., the UUT) in order to avoid attenuation of the high frequency signals. Moreover, the impedance of the interconnect between the UUT and test analyzer must also be matched to the impedance of the source and to the impedance of the load. The problem with present translator fixtures incorporating pins is that the characteristic impedance of the pins may vary from pin to pin. Such impedance variation is caused by the variance in the spacings between a set of two pins (i.e., a signal pin and a ground pin) used to test a set of test points. This variance is caused by the fact that the spacing between sets of test points to be tested on the UUT is different than the spacing between corresponding probes on the compliant test interface. In essence, each set of pins forms a capacitor with the air being the capacitor's dielectric. Since the spacing of one set of pins may vary from the spacing another set of pins, so does the capacitance between each set and hence the impedance of the pins of each set. As such, current translator fixtures incorporating pins are not suited for testing high frequency or high speed UUTs.
Currently, high frequency or high speed digital UUTs, such as digital circuit boards, digital circuit boards with mounted components, or individual components are typically tested using test sockets. Typically, short spring probes are fitted in cavities formed through the thickness of the socket. A contact side of the UUT is brought into pressure contact with the tips of the spring probes protruding through a side of the socket. A contact plate connected to the test analyzer is brought into contact with the tips of the spring probes protruding through an opposite side of the socket. The test analyzer transmits high frequency test signals to the contact plate from where the signals are transmitted through the spring probes to the UUT. However, because the spacing between spring probe centers in a socket is limited by the physical dimensions of the spring probes, e.g., the spring probe diameter, this type of test setup cannot be used to test UUTs having contact points whose center spacing is relatively short. Moreover, as the spacing between probes is decreased impedance matching may become infeasible. In order to minimize
Christie Parker & Hale LLP
Delaware Capital Formation Inc.
Sundaram T. R.
LandOfFree
Coaxial tilt pin fixture for testing high frequency circuit... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coaxial tilt pin fixture for testing high frequency circuit..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coaxial tilt pin fixture for testing high frequency circuit... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2837686