Coating of copper and silver air bridge structures

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Of specified material other than unalloyed aluminum

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S735000, C257S773000

Reexamination Certificate

active

06433431

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to integrated circuits and, in particular, relates to miniaturized electrical interconnects having reduced resistance and capacitance.
2. Description of the Related Art
To provide improved performance, manufacturers of integrated circuit devices continually strive to increase circuit density. Such devices are typically formed on a semiconductor substrate, such as a silicon wafer, and comprise a large number of miniaturized circuit elements. These elements, which include transistors, diodes, capacitors, and resistors, are usually disposed within or adjacent the substrate and define a plurality of circuit nodes. To combine the circuit elements into a useful electronic circuit, integrated circuit devices typically include a plurality of conducting paths that link the circuit nodes in a preferred manner. Typically, the conducting paths are provided by electrical interconnects comprising metallic wires including, for example, wires made of aluminum or aluminum alloy that are embedded in an insulating layer such as a layer of insulating SiO
2
.
However, as circuit density is increased, problems associated with conventional electrical interconnects are becoming more apparent. In particular, a higher density device having an increased number of circuit elements will likely require an even greater increase in the number of electrical interconnects. Consequently, the electrical interconnects will need to have a reduced thickness and adjacent interconnects will need to be spaced more closely together.
Unfortunately, such dimensional reductions tend to increase the resistance of individual interconnects and increase the capacitance between adjacent interconnects, thereby possibly increasing signal propagation delays and signal cross-talk. In particular, electrically charged adjacent conductors acts as the plates of the capacitors. As the distance between adjacent conductors decrease, the resulting capacitance increases. This resulting increase in capacitance slows propagation of signals as the capacitance must be overcome prior to propagation of the signal along the conductor. Hence, while it is desirable to increase device density on integrated circuits, considerations such as these pose problems for maintaining or improving circuit performance.
To improve the conductivity of interconnects, it has been suggested that copper metallurgy be substituted for the aluminum metallurgy that is now typically being used. Advantageously, copper metallurgy interconnects are viewed as having increased conductivity and thus less resistance. The lower resistance of interconnects of this metallurgy could allow the use of smaller dimensions of interconnects thereby facilitating the increase of device density on the integrated circuit. However, several potential problems have been encountered in the development of this proposed metallurgy. One of the main ones being the fast diffusion of copper through both silicon and SiO
2
. Fast diffusion of copper into silicon or silicon oxide results in diffusion of the conductive interconnect into the surrounding materials which can damage device performance or can result in short circuits occurring between adjacent interconnects.
To decrease capacitive loading, it has been suggested that the interconnects could be embedded in a solid insulating medium other than SiO
2
, such as a polymer comprising fluorinated polymide. However, as in the case of SiO
2
, an incompatibility problem with copper metallurgy has been found. In the case of polyimide, and many other polymers, it has been found that the polymer, during the curing, reacts with copper forming a conductive oxide CuO
2
, which is dispersed within the polymer. This then raises the effective dielectric constant of the polymer and in many cases increases its conductivity. Hence, there have been numerous suggested approaches towards solving the problems of capacitive coupling and increased resistance occurring as a result of a need to formulate smaller dimensioned interconnects that are spaced closer together. A primary difficulty that results is the relative incompatibility of lower resistance materials with the surrounding insulating material.
Silver is the ultimate conductor, in that it has the lowest specific resistivity of any metal or alloy. Furthermore, a vacuum is the ultimate dielectric, with air being nearly as good. However, the use of a vacuum introduces additional problems or complexities to the device. The first being the low heat conductivity of the vacuum and the second being the cost of the package required to maintain the vacuum. Air, which has somewhat better thermal conductivity, has its own problems in that both copper and silver react with air to form oxides or other compounds. Alternatively, gold is known to be quite environmentally stable. However it's specific resistivity is higher than that of copper and silver.
To address the problem of increased capacitance, interconnects comprising an air bridge have been developed as described in U.S. Pat. No. 5,891,797. The air bridge is a length of conducting material that extends from a first supported end to a second supported end through an air space such that the bridge is substantially surrounded by air. Consequently, because air has a dielectric constant that is substantially less than that of SiO
2
, the capacitance between adjacent interconnects is reduced.
However, because the air bridge tends to sag under its own weight, the length of the air bridge is a possible limiting factor. In particular, because the air bridge is only supported at its first and second ends, gravitational forces acting on the air bridge when the bridge is horizontally disposed cause the air bridge to sag such that the unsupported middle of the air bridge is deflected downward with respect to the first and second ends. Because the degree of sagging increases as the length of the bridge is increased, the length of the air bridge cannot exceed that which would cause the air bridge to break or come into contact with another conductor of the device.
According to classical mechanics for simple air bridge structures, the center of the bridge is deflected downward with respect to the supported and constrained ends by an amount &dgr; given by
δ
=
ρ



L
4
32



h
2

E
,
wherein &rgr; is the mass per unit volume of the air bridge, L is the length of the air bridge, h is the height of the air bridge, and E is the modulus of elasticity of the air bridge. Consequently, aside from the geometric factors L and h, the deflection &dgr; is proportional to the ratio of (&rgr;/E). Thus, an air bridge formed of a material having a reduced ratio of (&rgr;/E) will experience less sagging. If the ends of the bridge are not considered to be constrained then
δ
=
5



ρ



L
4
32



h
2

E
.
This is the worst case assumption.
Resistivity
Elastic Modulus
Mass Density
Material
(n&OHgr;m)
(GPa)
(Mg/m3)
&rgr;/E
Copper
16.7
128 
8.93
 0.0698
Silver
14.7
71
10.5
0.148
Gold
23.5
78
19.3
0.247
Aluminum
27.5
70
2.7
0.039
The table above illustrates the physical properties of possible air bridge materials. Both copper and silver have resistivities that are substantially less than that of aluminum and, thus, would provide air bridges with reduced resistance. Because copper has a ratio of (&rgr;/E) which is less than that of silver, a low resistance bridge comprising copper would experience less sagging and, thus, would be more suitable for applications that require bridges having extended lengths. Alternatively, because silver has a resistivity less than that of copper, a bridge comprising silver would be more suitable for applications that require reduced resistance. However, as was pointed out previously, both copper and silver are susceptible to environmental degradation in an air environment.
Gold also has a resistivity less than that of aluminum. Furthermore, gold is not susceptible to environmental degra

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coating of copper and silver air bridge structures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coating of copper and silver air bridge structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coating of copper and silver air bridge structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2888796

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.