Coating agent, method for its production and its use as...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S086000, C524S094000, C524S099000, C524S100000, C524S103000, C524S104000, C524S590000, C525S123000, C525S455000, C528S044000, C528S045000

Reexamination Certificate

active

06297314

ABSTRACT:

The present invention provides a polyurethane coating composition comprising
a) one or more polyester resins (A),
b) one or more polyacrylate resins (B),
c) one or more di- and/or polyisocyanates (C) having free or blocked isocyanate groups,
d) one or more light stabilizers (L1) based on a UV absorber,
e) one or more light stabilizers (L2) based on sterically hindered amines, and
f) one or more organic solvents (D).
The present invention further relates to processes for preparing the coating composition and to the use of the coating composition as a topcoat or clearcoat, especially for coating plastics.
In industry today there is increasing use of shaped components which are based on plastic, are used together with metal components, and require coating. This applies in particular to automotive components, which are being manufactured from plastics parts to an increasing extent: examples are bumper linings, spoilers, sills, wheel-arch linings and side trims or protection strips. For shaped components of this kind use is increasingly being made of plastics comprising polycarbonate and polycarbonate blends, preferably with a polycarbonate content of more than 5% by weight, based on the plastics fraction.
Plastics, however, are generally sensitive to the effects of weathering, such as UV radiation and moisture, and when exposed in this way exhibit a variety of problems, such as yellowing, embrittlement or cracking, for example, unless appropriate precautions are taken. In order to avoid these problems it is known, for example, to provide plastics that are exposed to the effects of weathering as a result of their use, for example, as exterior automotive components with clearcoats or topcoats. It is common to add light stabilizers to the coating materials employed for this purpose, in order to avoid or at least reduce the problems caused by UV radiation.
The requirements made of such light stabilizers are diverse. For instance, these additives should not have an adverse impact on the mechanical and chemical properties of the coating material. In addition, these additives should be chemically stable and stable to UV radiation and should also be light in color, stable in shade, easy to incorporate, and compatible with the other components of the coating material. A large number of different light stabilizers and their use in coating materials are already in fact known.
For example, various benzophenone derivatives, benzotriazole derivatives, triazines, acrylates, salicylates, oxazolines, organic nickel compounds, ferrocene derivatives, sterically hindered amines and the like are used, individually or in combination, as light stabilizers.
Despite the large number of known light stabilizers and known clearcoat systems there are still great problems in the coating of colored thermoplastics as are used in particular for exterior automotive components of large surface area. In addition to the weathering stability already mentioned, the coating materials employed are in fact required at the same time to exhibit good adhesion to the plastics substrates and to result in a hydrolysis-resistant system (i.e., good adhesion after moisture exposure) having good chemical resistance and good strength at room temperature, and exhibiting a ductile fracture behavior even at low temperatures of from −20 to −30° C. In the sector of the coating of plastics, furthermore, there is the additional requirement that the coating compositions used are curable at low temperatures (generally <100° C.) and even when cured at these low temperatures lead to films having the desired properties.
DE-A-43 26 670 discloses a polyurethane coating composition based on a hydroxybutyl (meth)acrylate-containing polyacrylate resin and, if desired, further polyacrylate resins and/or polycondensation resins and polyisocyanates as crosslinkers and also discloses the use thereof as a clearcoat in the field of automotive refinishing and for coating plastics. As light stabilizers, the clearcoat comprises a mixture of benzotriazine as UV absorber and a light stabilizer based on sterically hindered amines (Tinuvin® 292 from Ciba Geigy, light stabilizer based on bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate).
EP-B-455 211, finally, discloses an effect basecoat for the direct coating of unprimed plastics substrates consisting of or comprising polypropylene. Said effect basecoat described therein comprises not only physically drying binders but also cellulose acetobutyrate and from 0.5 to 15% by weight of one or more chlorinated polyolefins. Clearcoats and topcoats, however, are not described in EP-B-455 211.
It is an object of the present invention therefore to provide coating compositions which combine good weathering stability of the resulting coatings with good adhesion to the plastics substrates and which lead to a hydrolysis-resistant system (i.e., good adhesion after moisture exposure) having good chemical resistance and good strength at room temperature, said system also exhibiting a ductile fracture behavior at low temperatures of from −20 to −30° C.
This object is surprisingly achieved by means of a coating composition, of the type specified at the outset, wherein
1.) the polyester (A) has an OH number of from 80 to 200 mg KOH/g and an acid number <10 mg KOH/g,
2.) the polyacrylate resin (B) has an OH number of from 80 to 200 mg KOH/g and an acid number <20 mg KOH/g, and
3.) the light stabilizer (L2) based on sterically hindered amines is amino ether functionalized.
The present invention further provides processes for preparing this coating composition and provides for the use of this coating composition as a topcoat or clearcoat, especially for coating plastics.
It is surprising and was not foreseeable that by the use of a specific binder combination and, at the same time, a specific light stabilizer combination it is possible to provide coating compositions which are suitable as protective coating for color-pigmented plastics and meet all of the requirements commonly imposed on such coating compositions. Thus the coatings produced using these coating compositions are notable for good weathering stability coupled with good adhesion to the plastics substrates. In addition, they lead to a hydrolysis-resistant system (i.e., good adhesion after moisture exposure) having good chemical resistance and good strength at room temperature and exhibiting a ductile fracture behavior even at low temperatures from −20 to −30° C.
In the text below, the individual components of the coating composition of the invention are first of all elucidated.
It is essential to the invention that the coating composition comprises as binder a mixture of
a) at least one polyester (A) having an OH number of from 80 to 200 mg KOH/g, preferably from 130 to 180 mg KOH/g, and having an acid number <10 mg KOH/g, preferably <5 mg KOH/g, and
b) at least one polyacrylate resin (B) having an OH number of from 80 to 200 mg KOH/g, preferably from 100 to 150 mg KOH/g, and an acid number <20 mg KOH/g, preferably <10 mg KOH/g.
The coating composition preferably comprises the polyester or polyesters (component (A)) and the polyacrylate resin or resins (component (B)) in amounts such that the mixture consists of
a) from 40 to 80% by weight, preferably from 55 to 70% by weight, of component (A), and
b) from 60 to 20% by weight, preferably from 45 to 30% by weight, of component (B),
the figures being based in each case on the solids content of the resins and the sum of the percentages by weight of components (A) and (B) being in each case 100% by weight.
Preferably, the binders are further used in the coating composition of the invention in amounts such that the sum of the amount of polyesters (A) employed and the amount of polyacrylate resins (B) employed is from 30 to 70% by weight, with particular preference from 40 to 60% by weight, based in each case on the solids content of the binders and on the overall weight of the stock coating material (i.e., coating composition minus crosslinker component (C)).
All polyester

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coating agent, method for its production and its use as... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coating agent, method for its production and its use as..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coating agent, method for its production and its use as... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2616271

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.