Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2001-06-21
2004-04-06
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C524S500000, C524S543000, C524S555000, C524S558000, C524S549000, C524S557000, C524S515000, C524S502000, C524S524000, C524S522000
Reexamination Certificate
active
06716905
ABSTRACT:
The present invention relates to a coating composition comprising at least one reaction product (A) prepared by a process comprising reacting under free-radical conditions at least one free-radically reactable monomer (a) in the presence of at least one free-radical initiator and of a compound (I) as defined below in aqueous phase, to coating compositions comprising at least one polymer (B) as defined herein, and to coating compositions comprising if desired (A) and/or (B) as a dispersion.
WO 98/01478 describes a process for preparing polymers in which the monomer to be reacted, which is selected in particular from vinyl monomers and acid derivatives having unsaturated groups, such as anhydrides, esters and imides of (meth)acrylic acid, for example, is reacted in the presence of a free-radical initiator and a thiocarbonylthio compound as chain transfer agent.
WO 92/13903 describes a process for preparing polymers having a low molecular weight by free-radical chain polymerization of one or more monomers in the presence of a group transfer agent, as defined therein, which has a C—S double bond. On the evidence of that document the compounds described therein having a C—S double bond act not only as chain transfer agents but also as growth regulators, so that in accordance with that document it is only possible to prepare polymers of low molecular weight in the presence of this compound.
A process for free-radical chain polymerization of unsaturated monomers in aqueous medium and in the presence of a macromonomer having a —CH
2
—C(X)═CH
2
end group is defined in WO 93/22351, which also defines X. On the evidence of the examples of that application, various (meth)acrylates or (meth)acrylic acid and, if desired, monomers such as styrene are reacted in each case under emulsion or suspension polymerization conditions.
WO 93/22355 relates to a process for preparing crosslinkable polymers using a macromonomer as described in WO 93/22351.
WO 96/15157 likewise describes a process for preparing polymers having a comparatively narrow molecular weight distribution, in which a vinyl monomer, as defined therein, is reacted with a likewise vinyl-terminated macromonomer in the presence of a free-radical initiator.
Furthermore, WO 98/37104 relates to the preparation of polymers of controlled molecular weight, including acrylate-based polymers, by free-radical polymerization of corresponding monomers using a chain transfer agent which is defined more closely therein and has a C—C double bond and radicals which activate that double bond in terms of the free-radical addition reaction of monomers.
A free-radical chain polymerization or copolymerization with an &ohgr;-unsaturated oligo(methyl methacrylate) with ethyl acrylate, styrene, methyl methacrylate, acrylonitrile and vinyl acetate as comonomers is described in a scientific article in J. Macromol. Sci.-Chem., A 23(7), 839-852 (1986).
These documents do not mention using the products compositions described therein as coating ingredients.
The above-described polymer structures are of great interest for coating compositions, since such polymers enable the properties of the coating compositions to be set in a specific manner.
It is an object of the present invention to provide coating composition constituents which comprise chemically structured polymers which can be prepared by simple polymerization techniques. The polymers of the invention should in particular exhibit great variability in terms of the chemical composition and molecular weight.
We have found that these and other objects are surprisingly achieved by the coating composition of the invention comprising at least one reaction product (A), obtainable by a process comprising the following stage (i):
(i) reacting under free-radical conditions a reaction mixture comprising at least one free-radically reactable monomer (a) in the presence of at least one free-radical initiator and of a compound (I) of the formula
in which R
1
to R
4
each independently of one another are hydrogen, a substituted or unsubstituted alkyl radical, cycloalkyl radical or aralkyl radical, or an unsubstituted or a substituted aromatic hydrocarbon radical, with the proviso that at least two of R
1
to R
4
are an unsubstituted or a substituted aromatic hydrocarbon radical in aqueous phase, and at least one additive (C).
To prepare the abovementioned reaction product it is possible to use all free-radically reactable monomers as monomer (a). As monomer (a) it is preferred to use those free-radically homopolymerizable or copolymerizable compounds which include a hydrophilic group, such as, for example, a carboxyl group. With further preference, the monomers (a) comprise hydrophilic, free-radically homopolymerizable or copolymerizable monomers, i.e., monomers whose solubility in water is greater than that of styrene. It is of course also possible for mixtures of different hydrophilic monomers, and mixtures of at least one hydrophilic monomer and at least one hydrophobic monomer, to be present in the reaction mixture of stage (i). Specific representatives of monomers (a) are:
methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, alpha-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, functionalized methacrylates; acrylic acids and styrenes, selected from glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), diethylaminoethyl methacrylate, triethylene glycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), diethylaminoethyl acrylate, triethylene glycol acrylate, methacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, vinylbenzoic acid (all isomers), diethylaminostyrene (all isomers), alpha-methylvinylbenzoic acid (all isomers), diethylamino-alpha-methylstyrene (all isomers), paramethylstyrene, p-vinylbenzenesulfonic acid, trimethylsilylpropyl methacrylate, triethoxysilylpropyl methacrylate, tributoxysilylpropyl methacrylate, diethoxymethylsilylpropyl methacrylate, dibutoxymethylsilylpropyl methacrylate, diisopropoxymethylsilylpropyl methacrylate, dimethoxysilylpropyl methacrylate, diethoxysilylpropyl methacrylate, dibutoxysilylpropyl methacrylate, diisopropoxysilylpropyl methacrylate, trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, tributoxysilylpropyl acrylate, dimethoxymethylsilylpropyl acrylate, diethoxymethylsilylpropyl acrylate, dibutoxymethylsilylpropyl acrylate, diisopropoxymethylsilyl-propyl acrylate, dimethoxysilylpropyl acrylate, diethoxysilylpropyl acrylate, dibutoxysilylpropyl acrylate, diisopropoxysilylpropyl acrylate, vinyl acetate and vinyl butyrate, vinyl chloride, vinyl fluoride, vinyl bromide, and mixtures of the abovementioned monomers.
Preferably used as a first monomer (a′) is acrylic or methacrylic acid, a C
1
-C
4
-alkyl or C
1
-C
4
-hydroxyalkyl acrylate or methacrylate, vinyl acetate, a substituted or unsubstituted vinylpyrrolidone, a mixture of two or more thereof, or a mixture of said first monomer (a′) with at least one further free-radically homopolymerizable or copolymerizable monomer (a).
Also used in connection with the preparation of the reaction product (A) is a compound (I) of the formula
in which R
1
to R
4
each independently of one another are hydrogen, an unsubstituted or substituted alkyl radical, cycloalkyl radical or aralkyl radical or an unsubstituted or substituted aromatic hydrocarbon radical, the invention requiring at least two of R
1
Bendix Maximilian
Bremser Wolfgang
Christie David
Paulus Wolfgang
Raether Roman Benedikt
Cheung William
Coatings AG
Keil & Weinkauf
Wu David W.
LandOfFree
Coating agent does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coating agent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coating agent will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3219501