Coated glass fibers, composites and methods related thereto

Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S375000, C428S394000

Reexamination Certificate

active

06238791

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to coated glass fiber strands and, more particularly, to fiber strands having a hydrophobic, amine-reactive coating which can inhibit hydrolysis in reinforcing applications such as nylon composites.
BACKGROUND OF THE INVENTION
Reinforced composites are rapidly growing in popularity for such applications as automobile components, boat hulls and fishing rods. The coating on the reinforcement provides an interface between the reinforcement material, such as glass fiber strand, and the polymeric matrix material of the composite. The compatibility of the coating with the reinforcement material and the polymeric matrix material and strength of the bonding at the interface are important considerations in the selection of coating components. Moisture can attack this interface, as well as the surface of the glass and matrix resin, causing chain scission of the matrix resin, degradation and a decrease in molecular weight of the composite components and lower physical property values. Reinforcements having hydrolysis resistance are beneficial for applications in which the composite will be exposed to water and antifreeze solutions, such as engine radiator endcaps.
To repel water and inhibit wicking, U.S. Pat. No. 5,116,682 discloses yarn for heat stable fabrics which is coated with a perfluorinated polymer such as a perfluoroalkyl acrylic or methacrylic copolymer. U.S. Pat. No. 4,742,140 discloses oil- and water-repellent coatings for textile fabrics including copolymers of selected fluoroalkyl acrylate monomers, vinylidene chloride and alkyl acrylates or alkyl methacrylates.
Coated reinforcements are needed which can provide hydrolysis resistance to facilitate compatibility and bonding between the components of the coating on the fiber strands and the surrounding matrix material, such as nylon.
SUMMARY OF THE INVENTION
The present invention provides a strand comprising a plurality of fibers, at least one of the plurality of fibers having a layer of a coating composition on at least a portion of a surface thereof, the coating composition comprising a blend of a hydrophobic fluoroalkylacrylate polymer and an amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) aldehydes; (7) diketones and (8) mixtures of materials (1)-(7).
Another aspect of the present invention is a strand comprising a plurality of fibers, at least one of the plurality of fibers having a layer of a coating composition on at least a portion of a surface thereof, the coating composition comprising a polymerization reaction product of a hydrophobic fluoroalkylacrylate monomer and an monomeric amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) unsaturated epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) unsaturated aldehydes; (7) unsaturated diketones and (8) mixtures of materials (1)-(7), the reaction product having amine-reactive functionality.
Yet another aspect of the present invention is a coating composition comprising a blend of a hydrophobic fluoroalkylacrylate polymer and an amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) aldehydes; (7) diketones and (8) mixtures of materials (1)-(7).
Another aspect of the present invention is a coating composition comprising a polymerization reaction product of a hydrophobic fluoroalkylacrylate monomer and an monomeric amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) unsaturated epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) unsaturated aldehydes; (7) unsaturated diketones and (8) mixtures of materials (1)-(7), the reaction product having amine-reactive functionality.
Yet another aspect of the present invention is a reinforced polymeric composite comprising: (a) a reinforcement strand comprising a plurality of fibers, at least one of the plurality of fibers having a layer of a coating composition on at least a portion of a surface thereof, the coating composition comprising a blend of a hydrophobic fluoroalkylacrylate polymer and an amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) aldehydes; (7) diketones and (8) mixtures of materials (1)-(7); and (b) a polymeric matrix material.
Another aspect of the present invention is a reinforced polymeric composite comprising: (a) a reinforcement strand comprising a plurality of fibers, at least one of the plurality of fibers having a layer of a coating composition on at least a portion of a surface thereof, the coating composition comprising a polymerization reaction product of a hydrophobic fluoroalkylacrylate monomer and an monomeric amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) unsaturated epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) unsaturated aldehydes; (7) unsaturated diketones and (8) mixtures of materials (1)-(7), the reaction product having amine-reactive functionality; and (b) a polymeric matrix material.
Yet another aspect of the present invention is a method for inhibiting hydrolysis of a polyamide matrix material in a reinforced polyamide composite, comprising: (a) mixing a polyamide matrix material with a reinforcement strand to form a reinforced mixture, the reinforcement strand comprising a plurality of fibers, at least one of the plurality of fibers having a layer of a coating composition on at least a portion of a surface thereof, the coating composition comprising a blend of a hydrophobic fluoroalkylacrylate polymer and an amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) aldehydes; (7) diketones and (8) mixtures of materials (1)-(7); and (b) forming an essentially solid composite from the reinforced mixture.
Another aspect of the present invention is a method for inhibiting hydrolysis of a polyamide matrix material in a reinforced polyamide composite, comprising: (a) mixing a polyamide matrix material with a reinforcement strand to form a reinforced mixture, the reinforcement strand comprising a plurality of fibers, at least one of the plurality of fibers having a layer of a coating composition on at least a portion of a surface thereof, the coating composition comprising a polymerization reaction product of a hydrophobic fluoroalkylacrylate monomer and an monomeric amine-reactive material selected from the group consisting of (1) unsaturated carboxylic acids having 3 to 10 carbon atoms and anhydrides thereof; (2) unsaturated epoxides; (3) cyanoacrylates; (4) acrylamides which are free of hydroxyl groups; (5) acrylonitriles; (6) unsaturated aldehydes; (7) unsaturated diketones and (8) mixtures of materials (1)-(7), the reaction product having amine-reactive functionality; and (b) forming an essentially solid composite from the reinforced mixture.


REFERENCES:
patent: 3803339 (1974-04-01), Speekman
patent: 3920614 (1975-11-01), Kirimoto et al.
patent: 3923715 (1975-12-01), Dettre et al.
patent: 4002819 (1977-01-01), Woytiuk
patent: 4029585 (1977-06-01), Dettre et al.
patent: 4070152 (1978-01-01)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coated glass fibers, composites and methods related thereto does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coated glass fibers, composites and methods related thereto, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coated glass fibers, composites and methods related thereto will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2546082

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.