Coasting downshift control strategy for a multiple-ratio...

Interrelated power delivery controls – including engine control – Transmission control – Transmission controlled by engine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C477S148000

Reexamination Certificate

active

06254510

ABSTRACT:

TECHNICAL FIELD
The invention relates to coasting downshift controls for a multiple-ratio automatic transmission for an automotive vehicle.
BACKGROUND ART
In a multiple-ratio transmission having a hydrokinetic torque converter and multiple-ratio gearing, engine torque is delivered to the impeller of the converter as the turbine of the converter drives the input element of the multiple-ratio gearing. Shifts between ratios is controlled by a shift valve system. When the vehicle is coasting with the engine throttle closed, the shift valve system will effect coasting downshifts. At that time, the vehicle is traveling at a relatively low speed and the engine is at or near an idle state.
During a coasting downshift from a ratio in which a friction clutch is engaged to frictionally connect two elements of the gearing to a ratio in which a reaction element is held by a friction brake, the shift is characterized as a synchronous shift. That is, the clutch must be released in synchronism with the application of the brake. In such instances, the capacity of the clutch is in excess of the capacity that would be required during a coasting downshift. The brake, which is operated by a brake servo, has a higher pressure requirement.
The pressure requirement of the brake and the capacity of the clutch are designed to meet the requirements of the driveline during normal torque delivery. This, of course, results in excess capacity for the clutch during a coasting downshift when the driving torque is at minimal levels.
Such a synchronous downshift may result in a torque reversal in the driveline, which results in an audible torque disturbance as the powertrain experiences a transition from an operating mode in which the engine drives the wheels of the vehicle before the shift to an operating mode in which the wheels drive the engine after the shift. As the so-called lash in the transmission is traversed at the transition point, the shift feel may be objectionable, particularly when the torque disturbance is audible during a coasting downshift.
In those special instances in which the engine speed is decaying normally on a coasting downshift as the operator closes the engine throttle, the torque gradient from the torque delivery state to a coasting torque state will be slight, and the lash in the driveline will not result in an audible torque disturbance. On the other hand, if the oncoming friction brake “pulls” the output torque through the transition point as the torque direction is reversed, the torque gradient will be steep and the downshift quality will be unacceptable.
Transmissions typically are calibrated for optimal downshift points on a coasting downshift when the engine is operating at its normal operating temperature. During operation of the engine at low engine temperature following a cold start, however, the engine control strategy usually requires an increase in engine speed. This is done by increasing the duty cycle of a duty cycle controlled bypass air valve. The idle air bypass can be controlled in other ways, of course, other than by using a duty cycle controlled bypass air valve.
If the coasting downshift should occur while the engine is operating with an increased speed following a cold start, a synchronous coasting downshift typically is accompanied by a torque reversal at the operating mode transition point that may degrade the downshift quality.
DISCLOSURE OF INVENTION
The invention comprises a control system and strategy that permits coasting downshifts to occur with minimal torque disturbance. This is done by moving the downshift point so that the downshift point occurs when the vehicle speed is high enough to avoid a torque reversal. The downshift point adjustment is based upon the magnitude of the engine speed at the time of the downshift. The shift point is altered only when the desired engine speed is greater than the base idle speed; for example, when the base idle speed is increased following a cold start. The shift points are adjusted by using a shift point adder until the need for an increase in the desired engine speed is no longer present.
In practicing the invention, the engine speed is monitored, and the engine idle speed is increased to a value greater than normal idle speed during cold engine operation as the duty cycle for the duty cycle controlled idle bypass air valve is raised. Factors other than temperature also affect the idle speed. The speed ratio coasting downshift point is adjusted to a ratio in which a clutch is released to a lower ratio in which a brake is applied by adding to the normal coasting downshift vehicle speed point an incremental value whereby torque reversals in the driveline during coasting downshifts are avoided during cold engine operation.


REFERENCES:
patent: 5586029 (1996-12-01), Schulz et al.
patent: 5642283 (1997-06-01), Schulz et al.
patent: 5809442 (1998-09-01), Schulz et al.
patent: 5835875 (1998-11-01), Kirchhoffer et al.
patent: 5954776 (1999-09-01), Saito et al.
patent: 6007445 (1999-12-01), Kirchhoffer et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coasting downshift control strategy for a multiple-ratio... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coasting downshift control strategy for a multiple-ratio..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coasting downshift control strategy for a multiple-ratio... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2532957

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.