Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2000-01-31
2001-02-06
Picard, Leo P. (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S689000, C361S692000, C361S724000, C361S826000, C361S827000, C312S265500, C312S223100, C174S050510, C174S034000, C454S184000
Reexamination Certificate
active
06185098
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the field of cabinets for mounting and storing electronic components, and, more particularly, to cabinets having a plurality of separable, vertically arrayed, interior compartments for separately mounting and storing electronic components.
BACKGROUND OF THE INVENTION
Frames and cabinets for mounting and storing electronic components have been well known for many years. Frames are typically simple rectangular frameworks on which electronic components may be mounted, or on which other mounting members, such as shelves or brackets, may be mounted which in turn may support the electronic components. Cabinets are typically frames on which panels or doors, or both, are hung to provide aesthetic improvement, to protect the components from external influences, to provide security for the components stored inside, or for other reasons.
Frames and cabinets have been built in many different sizes and with many different proportions in order to best accommodate the components which they are designed to store. Large frames and cabinets have been created to hold large components or to hold multiple components. Smaller frames and cabinets are more commonly utilized for smaller components.
Components stored in these frames and cabinets may include audio and video equipment and the like, but quite frequently include computer equipment and related peripheral devices. Regardless of the component type, each component typically requires an external power supply and a plurality of input and output wires and cables. Some of these wires and cable are connected to other components in the same frame or cabinet, and some of which extend out of the frame or cabinet to either an adjacent frame or to a remote location, typically using either an overhead cabling system or an under-floor cabling system.
Typically, large computer installations are contained entirely within one room in a building. The installation facility, which commonly includes the room and everything in it, is typically under the control of a single entity, which oversees such operational details as the design of the installation, the physical installment process, the day-to-day operation of the installation, service and maintenance for the computers in the installation, the environmental characteristics of the room, security for the room, and many other details. Thus, that single entity has the ability and the authority to install and arrange frames or cabinets at the installation facility however desired. Moreover, the same entity has the ability and authority to install and arrange the computers within those frames however desired. Among other things, this allows the entity to minimize the number of frames by utilizing the largest size frame that will fit within the room and by installing as many components within each frame, if so desired.
With the advent of the internet, however, a very different type of installation facility has been developed. It is well known that the operation of the internet requires the joint efforts of thousands or tens of thousands of specialized computers commonly known as “servers.” Servers are used to communicate data from one point to another in the “world wide web.” In order to facilitate computer operators in millions of locations around the world to access the web, the servers must be stationed in thousands of different physical locations, which therefore require thousands of installation facilities. Unfortunately, each installation facility requires a certain amount of space, staff personnel to oversee operation, sufficient environmental controls including sufficient heating and air conditioning equipment, and many other necessities. Therefore, each separate installation facility bears a significant amount of overhead cost, the effect of which cannot be avoided through economies of scale. In addition, a high-speed data path must be provided between each server and some kind of central office switch in order to provide connectivity between the server and the internet backbone. Together, these factors impose significant costs on any entity seeking to build a network of servers. As a result, installation facilities have been developed in which one entity, or “host,” provides proximity to a central office switch, floor-space, temperature control, power supply, and other general operational requirements to a multiplicity of tenant network server owners. Each server owner controls one or more individual server within the facility, sharing the overhead costs with other owners of servers co-located in the same facility in order to achieve economies of scale with regard to the general operational infrastructure described above.
Unfortunately, individual servers in such a facility are typically installed within a single room. Thus, any co-located server owner who visits the facility in order to access his servers is also able to access servers belonging to other owners. Whether this intrusion is unintentional on the part of an owner, or in a worse scenario, intentional, any owner has the ability, at a minimum, to inadvertently observe or deduce information about his competitors' equipment merely by looking at it, to physically access the equipment temporarily to determine detailed technical information about it, or, in unusual cases, to physically tamper with the equipment in order to cause damage or to spy on its operation. As a result, precautions must be taken in order to prevent such unauthorized access by one owner to equipment belonging to another owner.
In one solution to the aforementioned problems, access to the facility may be limited to times when such access can be supervised by the host of the facility. Unfortunately, it is much more desirable to be able to access the equipment at any time, particularly in order to provide emergency service to equipment which has failed suddenly and unexpectedly, but the cost to the host of providing sufficient staff to ensure continuous availability to the facility is typically prohibitive. In addition, unless the equipment is stored within a cabinet, unauthorized visual access to other owners' servers is still available to any owner entering the facility.
In another solution to the aforementioned problems, security may be provided by installing each server in a separate, securable cabinet. In such an installation, an owner may enter the room and access his equipment at any time, but is unable to physically access other owners' equipment when that equipment is secured within a cabinet. Visual access may also be limited by utilizing opaque panels which prevent unauthorized personnel from viewing equipment contained within a cabinet. Unfortunately, server equipment typically does not require a full-height frame; i.e., one which extends to the height of the ceiling, or to the highest point generally accessible by service personnel. As a result, servers are commonly mounted in separate cabinets which are lined up adjacent to each other in the room or rooms at the installation facility. However, this solution greatly reduces the number of co-located servers that can be located in a given floor space, thereby greatly reducing the lease income return on investment available to the co-location facility host.
Alternatively, the space available within a room may be more effectively utilized by mounting individual cabinets on the walls of the room. Thus, a server may be stored in one or more wall-mounted cabinet which is located directly above a standard cabinet resting on the floor. However, such a solution may only be utilized around the perimeter of the room. In addition, such a solution has no provision for managing the cabling required to route cables and wires to or from adjacent cabinets and to or from overhead or under-floor cabling systems. Further, each discrete cabinet carries a relatively similar cost in materials, and wall-mounted cabinets are typically more difficult to install than standard floor-mounted cabinets. Thus, a need exists for a co-location server cabinet in which indiv
Chatsworth Products, Inc.
Datskovsky Michael
Kennedy Covington Lobdell & Hickman LLP
Picard Leo P.
LandOfFree
Co-location server cabinet does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Co-location server cabinet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Co-location server cabinet will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2588641