Co-clustering objects of heterogeneous types

Data processing: database and file management or data structures – Database and file access – Preparing data for information retrieval

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C706S045000

Reexamination Certificate

active

07743058

ABSTRACT:
A method and system for high-order co-clustering of objects of heterogeneous types is provided. A clustering system co-clusters objects of heterogeneous types based on joint distributions for objects of non-central types and objects of a central type. The clustering system uses an iterative approach to co-clustering the objects of the various types. The clustering system divides the co-clustering into a sub-problem, for each non-central type (e.g., first type and second type), of co-clustering objects of that non-central type and objects of the central type based on the joint distribution for that non-central type. After the co-clustering is completed, the clustering system clusters objects of the central type based on the clusters of the objects of the non-central types identified during co-clustering. The clustering system repeats the iterations until the clusters of objects of the central type converge on a solution.

REFERENCES:
patent: 6263334 (2001-07-01), Fayyad et al.
patent: 6269376 (2001-07-01), Dhillon et al.
patent: 6560597 (2003-05-01), Dhillon et al.
patent: 6581058 (2003-06-01), Fayyad et al.
patent: 6738450 (2004-05-01), Barford
patent: 6944607 (2005-09-01), Zhang et al.
patent: 6976020 (2005-12-01), Anthony et al.
patent: 7039638 (2006-05-01), Zhang et al.
patent: 7072891 (2006-07-01), Lee et al.
patent: 7272543 (2007-09-01), Estevez-Schwarz et al.
patent: 7461073 (2008-12-01), Gao et al.
patent: 2003/0069908 (2003-04-01), Anthony et al.
patent: 2003/0084421 (2003-05-01), Estevez-Schwarz et al.
patent: 2003/0110181 (2003-06-01), Schuetze et al.
patent: 2003/0154181 (2003-08-01), Liu et al.
patent: 2003/0204484 (2003-10-01), Charpiot et al.
patent: 2005/0015366 (2005-01-01), Carrasco et al.
patent: 2005/0203889 (2005-09-01), Okubo et al.
patent: 2006/0204103 (2006-09-01), Mita et al.
patent: 2006/0242093 (2006-10-01), Richardson et al.
patent: 2007/0136286 (2007-06-01), Webster et al.
patent: 2008/0163056 (2008-07-01), Lamadon
U.S. Appl. No. 11/354,208, Gao et al.
“SDP Semidefinite Programming,” 2 pages, http://www-user.tuchemnitz.de/˜helmberg/semidef.html [last accessed Nov. 29, 2006].
“SDPA Online Introduction,” 5 pages, http://grid.r.dendai.ac.jp/sdpa/intro.html [last accessed Jan. 9, 2006].
Bach, Francis R. and Michael I. Jordan, “Learning Spectral Clustering,” Neural Info. Processing Systems 16, NIPS 2003, 8 pages.
Baeza-Yates, R. and B. Ribeiro-Neto, “Chapter 2 Modeling, Modern Information Retrieval,” ©1999 by the ACM Press, pp. 19-71.
Banerjee, Arindam, Inderjit Dhillon and Dharmendra S. Modha, “A Generalized. Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation,” Research Track Poster, KDD'04, Aug. 22-25, 2004, Seattle, Washington, pp. 509-514, ©2004 ACM.
Benson, H.P., “Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem,” Journal of Optimization Theory and Applications, vol. 112, No. 1, Jan. 2002, ©2002 Plenum Publishing Corporation, pp. 1-29.
Cai, Deng et al., “Hierarchical Clustering of WWW Image Search Results Using Visual, Textual and Link Information,” MM'04, New York, ©2004 ACM, 8 pages.
Cai, Deng et al., “Organizing WWW Images Based on The Analysis of Page Layout and Web Link Structure,” In the 2004 IEEE International Conference on Multimedia and EXPO, ©2004 IEEE, 4 pages.
Chang, Tianhorng. and C. C. Jay Kuo, Texture Analysis and Classification with Tree-Structured Wavelet Transform, IEEE Transactions on Image Processing, vol. 2, No. 4, Oct. 1993, ©1993 IEEE, pp. 429-441.
Chen, Yixin, James Z. Wang and Robert Krovetz, “Content-Based Image Retrieval by Clustering,” MIR'03, Berkeley, California, ©2003 ACM Press, pp. 193-200.
Dhillon, Indedit S., “Co-clustering documents and words using Bipartite Spectral Graph Partitioning,” In KDD'01, San Francisco, California, pp. 269-274, ©2001 ACM.
Dhillon, Inderjit S., Subramanyam Mallela and Dharmendra S. Modha, “Information-Theoretic Co-clustering,” SIGKDD'03, Aug. 2003, Washington, DC, pp. 89-98, ©2003 ACM.
Ding, Chris H.Q. et al., “A Min-max Cut Algorithm for Graph Partitioning and Data Clustering,” Proc. IEEE Int'l Conf. Data Mining 2001, pp. 1-8.
Duda, Richard O., Peter E. Hart and David G. Stork, “Chapter 10 Unsupervised Learning and Clustering,” Pattern Classification, Second Edition, ©2001 by John Wiley & Sons Inc., pp. 517-599.
Dumais, Susan T., “Chapter 4 Latent Semantic Analysis,” Annual Review of Information Science and Technology (ARIST), vol. 38, Section II, Technology, 2004, pp. 189-230.
El-Yaniv, Ran and Oren Souroujon, “Iterative Double Clustering for Unsupervised and Semi-Supervised Learning,” In Proceedings of ECML '101, pp. 121-132, 2001.
Freitas, Alex A., “A Critical Review of Multi-Objective Optimization in Data Mining: a position paper,” SIGKDD Explorations, vol. 6, Issue 2, 2004, pp. 77-86.
Frenk, J.B.G. and S. Schaible, “Fractional Programming,” Sep. 17, 2004, ERIM Report Series Reference No. ERS-2004-074-LIS, 55 pages, http://ssrn.com/abstract=595012 [last accessed Nov. 29, 2006].
Fujisawa, Katsuki et al., “Numerical Evaluation of SDPA (SemiDefinite Programming Algorithm),” Revised Sep. 1998, 29 pages.
Gao, Bin et al., “Consistent Bipartite Graph Co-Partitioning for Star-Structured High-Order Heterogeneous Data Co-Clustering,” Research Track Paper, KDD'05, Chicago, © 2005 ACM, pp. 41-50.
Gao, Bin et al., “Hierarchical Taxonomy Preparation for Text Categorization Using Consistent Bipartite Spectral Graph Co-partitioning,” Sep. 2005, IEEE Transactions on Knowledge and Data Engineering, vol. 17, No. 9, © 2005 IEEE, pp. 1-11.
Gao, Bin et al., “Web Image Clustering by Consistent Utilization of Visual Features and Surrounding Texts,” MM'05, Nov. 6-11, 2005, Singapore, ©2005 ACM, pp. 112-121.
Golub, Gene H. and Charles F. Van Loan, “Chpts. 2.5, 7.1, 8.1 & 8.7,” Matrix Computations, Johns Hopkins University Press, 3rd edition, 1996, pp. 69-75, 310-320, 393-405 and 461-469.
Gordon, Shill, Hayit Greenspan and Jacob Goldberger, “Applying the Information Bottleneck Principle to Unsupervised Clustering of Discrete and Continuous Image Representations,” Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003), ©2003 IEEE, 8 pages.
Hagen, Lars and Andrew B. Kahng, “New Spectral Methods for Ratio Cut Partitioning and Clustering,” IEEE Transactions on Computer-Aided Design, vol. 11, Sep. 1992, ©1992 IEEE, pp. 1074-1085.
La Cascia, Marco et al., “Combining Textual and Visual Cues for Content-based Image Retrieval on the World Wide Web,” IEEE Workshop on Content-based Access of Image and Video Libraries, Jun. 1998, 5 pages.
Li, Zhiwei et al., “Group WWW Image Search Results by Novel Inhomogeneous Clustering Method,” In proceedings of the 11th International Multimedia Modelling Conference (MMM'05), ©2005 IEEE, 7 pages.
Long, Bo, Zhongfei (Mark) Zhang and Philip S. Yu, “Co-clustering by Block Value Decomposition,” Research Track Poster, KDD'05, Aug. 21-24, 2005, Chicago, Illinois, pp. 635-640, ©2005 ACM.
Mao, Jianchang and Anil K. Jain, “Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models,” Jun. 20, 1991, Pattern Recognition, vol. 25, No. 2, ©1992 Pattern Recognition Society, pp. 173-188.
Pothen, Alex et al., “Partitioning Sparse Matrices with Eigenvectors of Graphs,” Dec. 27, 1989, Siam J. Matrix Anal. Appl.., vol. 11, No. 3, Jul. 1990, ©1990 Society for Industrial and Applied Mathematics, pp. 430-452.
Qiu, Guoping, “Image and Feature Co-Clustering,” ICPR 4, 2004, pp. 991-994.
Rodden, Kerry et al., “Does Organisation by Similarity Assist Image Browsing?,”

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Co-clustering objects of heterogeneous types does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Co-clustering objects of heterogeneous types, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Co-clustering objects of heterogeneous types will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4212422

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.