Telecommunications – Radiotelephone system – Including private cordless extension system
Reexamination Certificate
1998-09-01
2001-02-20
Kuntz, Curtis A. (Department: 2743)
Telecommunications
Radiotelephone system
Including private cordless extension system
C455S433000, C455S463000
Reexamination Certificate
active
06192250
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to cellular wireless telecommunications, and, more particularly, to a switching system for use in a cellular wireless telecommunications network.
BACKGROUND OF THE INVENTION
Cellular telephony is one of the fastest growing communication services. It is also one of the most rapidly evolving areas in terms of technology, services, standards, and service providers. At this time, many options are being considered for the next generation (generally called “third generation”) of wireless communication systems, including extensions and additions to existing cellular systems, wireless ATM, and wireless Internet. It is a challenge to build wireless network infrastructure (particularly a switching system) that can meet the needs of yet to be built systems in a cost- and performance-effective way because of the uncertainty as to which technologies will be widely accepted and because it is likely that several sets of standards and technologies will co-exist. For a good description of third generation cellular systems, see IEEE Personal Communications Magazine, Special Issue on IMT2000: Standards Efforts of the ITU, Vol. 4, No. 4, August, 1997.
Third generation systems will require increased capacity because the number of users and bandwidth required for advanced services will greatly increase. For this reason, these systems will use digital air interfaces, and will use smaller cell sizes to increase frequency re-use. The increase in number of network access points (cell sites) requires that more equipment be deployed to concentrate onto a backbone network. This equipment must be inexpensive to allow networks with large coverage areas to be built. To be cost effective, systems should be scalable so that a range of installations, from small and inexpensive to large and high capacity, can be supported.
Third generation networks will also provide an expansive set of services, including telephone services available on modern ISDNs, location-based services, data services, and multimedia communication. Signaling protocols and control procedures must be added to existing systems to support these new services while interworking with existing services. An ideal system will allow new services to be added to existing systems without requiring major software modifications.
Because it is unlikely that there will be a single protocol suite or network type for third generation systems, these systems will have to interwork. In addition, third generation systems will be required to interwork with second generation systems. An ideal system will define a set of functions that cannot only interwork with different networks, but be used to implement different systems without major software redevelopment.
Summarizing, the next generation of wireless infrastructure requires a switching arrangement that is scalable to support inexpensive small installations, and flexible to support the easy introduction of new services and interwork with emerging systems without major software modifications.
One approach to a third generation cellular wireless telecommunications switching system that has been tried in the past is called Wireless Distributed Call Processing Architecture (W-DCPA). This approach is described in a first article authored by La Porta, T. F. Veeraraghavan, M., P. Treventi, R. Ramjee, entitled “Distributed Call Processing for Personal Communications Services,” published in IEEE Communications Magazine, Vol. 33, No. 6, June, 1995, and in a second article authored by T. F. La Porta, M. Veeraraghavan, R. W. Buskens, entitled “Comparison of Signaling Loads for PCS Systems,” published in IEEE/ACM Transactions on Networking, Vol. 4, No. 6, December 1996.
The W-DCPA approach has several drawbacks. First, it does not allow for graceful evolution from existing systems to a third generation approach, but rather requires a “flash cut” from existing to new equipment. Second, components internal to W-DCPA had various interfaces to other entities in the telecommunications network, which were non-standard. Therefore, W-DCPA was not arranged or able to use existing call processing and mobility management application layer protocols.
SUMMARY OF THE INVENTION
In accordance with the present invention, a “cluster mobile switching center” (cMSC) is arranged to perform the switching and control functions of a conventional mobile switching center (MSC), including, if desired, the additional functions of a conventional visitor location register (VLR). The cMSC of the present invention is implemented on distributed processors using modular software. Advantageously, a specific class of software, known as Common Object Request Broker Architecture (CORBA), is used as the communications middleware. CORBA is described in a publication from the Object Management Group (OMG), The Common Request Broker: Architecture and Specification, Rev. 1.2, December, 1993.
Functionally, the cMSC is arranged to have two classes of servers: (1) Interworking managers (IMs) that act as gateways and provide interfaces to external network elements, and (2) core servers that perform call processing functions and communicate with each other using CORBA. IMs terminate standard protocols with the external elements and use CORBA to communicate with the core servers. Software objects are defined to perform specific tasks and manage particular resources. These objects interact to provide end-to-end services. Each object has a well-defined interface through which others may access its services. As long as its interface is kept unchanged, a single object may be modified to change its behavior or upgrade its functionality without affecting other existing objects. This makes the system scalable in the functional dimension and aids in the evolution from second to third generation systems. Objects that perform strongly related functions are grouped together into a server. The objects within each server are implemented as C++ objects; servers are implemented as CORBA objects, each with its own interface defined in the CORBA Interface Definition Language (IDL). This is the only interface to the server; interfaces to the individual internal objects of a server are not accessible to objects outside the server. Servers each run as a single UNIX process. The servers may be replicated and distributed across processors to allow the system to be scalable in the capacity dimension.
REFERENCES:
patent: H1837 (2000-02-01), Fletcher et al.
IEEE Personal Communications Magazine, Special Issue on IMT-2000: Standards Efforts of the ITU, 4, No. 4 (Aug. 1997).
T. F. La Porta et al., “Distributed Call Processing for Personal Communications Services,”IEEE Communications Magazine, 33, No. 6 (Jun. 1995).
T. F. La Porta et al., “Comparison of Signaling Loads forf PCS Systems,”IEEE/ACM Transactions on Networking, 4, No. 6 (Dec. 1996).
“The Common Request Broker: Architecture and Specification,” Rev. 1.2 (Dec. 1993) can be ordered from Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado 801124-5704.
K. Murakami et al., “Design, Implementation, and Evaluation of Highly Available Distributed Call Processing Systems,” FTCS'98.
IS-634 revision A, 2ndBallot Version (Oct., 1997) can be ordered from Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado 80112-5704.
ITU Recommendations Q.700-Q.795, Specifications of Signaling System No. 7, (1997) can be ordered from Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado 80112-5704.
TIA/EIA IS-41 (Revision D): “Cellular Radio-Telecommunications Intersystem Operations” (1997) can be ordered from Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado 80112-5704.
Buskens Richard Wayne
Deitz Michael P.
La Porta Thomas F.
Lin Yow-Jian
Murakami Kazutaka
Freedman Barry H.
Kuntz Curtis A.
Lucent Technologies - Inc.
Ramakrishnaiah Melur
LandOfFree
Cluster mobile switching center does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cluster mobile switching center, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cluster mobile switching center will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2564423