Cloth-like mechanical fastener

Surgery – Means and methods for collecting body fluids or waste material – Absorbent pad for external or internal application and...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S385230, C604S390000, C024S442000

Reexamination Certificate

active

06730069

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a mechanical fastener suitable for use on a disposable absorbent article. More particularly, the present invention relates to a cloth-like mechanical fastener having improved flexibility and to methods by which such a fastener can be made.
BACKGROUND OF THE INVENTION
It is desired that mechanical fasteners have the ability to provide reliable yet comfortable securement of garments. Moreover, it is desirable that such mechanical fasteners be provided on a flexible material. The fastening material is desirably embedded within the flexible material to help present a cloth-like surface to the wearer or the caregiver and to reduce the possibility of the fastener having exposed harsh edges. In certain circumstances, it is also desirable that such fasteners include multiple discrete areas of mechanical fastening material to further enhance the flexibility of the fastener and reduce the possibility of creasing the rigid fastener material. This is particularly useful if the fastener is being used in combination with a garment to be worn by an active wearer. As such, it is desirable that the fastener be capable of being bent or conformed to better accommodate an active wearer while reducing the potential of creasing the rigid fastener material in order to avoid the creation of harsh, rough edges. In such circumstances, it is also desirable for the perimeter of the mechanical fastening material to be surrounded by the flexible material to further ensure the comfort of the wearer when the mechanical fastener is in use. Such fasteners can be advantageously provided for use on absorbent articles such as diapers, diaper pants, training pants, incontinence garments, feminine hygiene products, wound dressings or the like.
In general, the term “mechanical fasteners” may include hooks, snaps, buttons, zippers and other means. Specifically, the “mechanical fasteners” of subject invention are what are commonly referred to as “hook-and-loop” fastener systems. Some hook-and-loop systems employ hooks attached to a non-woven, woven, or knitted fabric backing. These systems, with hooks attached to a fabric backing find utility in various textile and durable applications, may be flexible, but are generally rather harsh and are too expensive for use in disposable absorbent products. More specifically, the focus of this invention is on hook-and-loop fastener systems wherein the “hooks” are directly attached to a more or less continuous polymer film or billet.
Typically, mechanical fasteners do not have a flexible backing material. Mechanical fasteners have conventionally had relatively thick and rigid backing materials that are prone to creasing. The creases, in combination with the harsh edges of the fastener material itself, may lead to red-marking or irritation of the wearer's skin. For example, mechanical fasteners currently used on absorbent articles typically include a single area of fastening material with a backing material that is several times thicker than the material used for the outer cover of the absorbent article. Typically, the outer cover film material is 10 to 20 &mgr;m thick. The backing material of mechanical fasteners is typically in the range of from about 50 to about 300 &mgr;m thick. Moreover, the mechanical fastening material is not recessed within the film backing material, thereby exposing the rigid edges of the fastening material.
In the past, absorbent articles have been constructed to include isolated areas or patches of hook fastening material for securement within the article itself or for securement of the article to a garment. While the hook fastening material of such articles may have been configured into discrete areas, the hook fastening material was not recessed around its edges into the surrounding material (such as a nonwoven material). Therefore, such articles still had the potential for harsh edges of fastening material to be exposed. The existing art has also recognized the need to somehow buffer the edges of hook fastening materials. For example, fastening materials having a base with feathered selvedge edges have been described. The thickness of the base gradually decreases from a nominal value to a minimum value over the width of the feathered selvedge edges. Such art, however, does not describe recession of the base edges into a surrounding material.
Accordingly, there remains a need for hook and loop type mechanical fastener systems that can provide the benefits of flexibility, softness, simplicity of manufacture and a cloth-like presentation. That is, there remains a need for mechanical fasteners that are provided on a flexible layer, that have the rough edges of the fastener material recessed within a flexible layer, and that can be bent or altered with reduced creasing. Such a fastener would improve the comfort of the wearer by better accommodating the wearer and providing a pleasing cloth-like feel in use. Moreover, there is a need for improved methods of reliably and consistently making disposable absorbent articles with such mechanical fasteners.
SUMMARY OF THE INVENTION
In response to the difficulties and problems discussed above, new mechanical fasteners, and methods by which fasteners can be made have been discovered. The mechanical fasteners of the present invention provide several benefits including a more cloth-like presentation, decreased likelihood of creasing and reduced risk of skin irritation. While the fasteners of the present invention can have a variety of applications, the fasteners are particularly beneficial when used in conjunction with absorbent articles such as diapers, incontinence garments, training pants and diaper pants. The purposes and advantages of the present invention will be set forth in and apparent from the description that follows, as well as will be learned by the practice of the invention. Additional advantages of the invention will be realized and attained by the fasteners and methods particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
In one aspect, the present invention concerns a mechanical fastener that defines a fastener longitudinal direction, a fastener lateral direction, and a third direction. The fastener longitudinal direction is the direction that is parallel to the centerline of an absorbent article when a fastener is attached to an absorbent article and generally corresponds to the “y” direction of the fastener. The fastener lateral direction is the direction that is perpendicular to the centerline of an absorbent article when a fastener is attached to an absorbent article and generally corresponds to the “x” direction of the fastener. The third direction is the direction that is perpendicular to the plane defined by both the fastener lateral direction and the fastener longitudinal direction, and generally corresponds to the “z” direction of the fastener. The fastener comprises a flexible layer and at least one discrete fastener island. The fastener island has a planar perimeter edge, a mechanical fastening material, and a backing material attached to the mechanical fastening material. The backing material is embedded within the flexible layer and the planar perimeter edge is surrounded by the flexible layer. The planar perimeter edge is the outermost edge of the fastener island along a plane defined by the lateral and longitudinal direction, and is perpendicular to the third direction. As such, the planar perimeter edge defines the edge of the fastener island at its largest cross section.
The flexible layer may be constructed of a fabric, for example, a nonwoven material. Other suitable materials for the flexible layer include knit or woven fabrics, foams and reticulated films. Various types of nonwoven materials may be advantageously used as the flexible layer, such as a thermally or chemically bonded carded web or a nonwoven laminate. Examples of nonwoven laminates that may be advantageously used as the flexible layer include stretchable neck bonded laminates, such as those disclosed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cloth-like mechanical fastener does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cloth-like mechanical fastener, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cloth-like mechanical fastener will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259526

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.