Closure with internal flow control for a pressure openable...

Dispensing – Outlet element operated by pressure of contents – Spring form – resilient or compressible flow controller or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S212000, C222S490000, C222S492000, C222S547000, C222S564000

Reexamination Certificate

active

06446844

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATION(S)
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
REFERENCE TO A MICROFICHE APPENDIX
Not applicable.
TECHNICAL FIELD
The present invention relates to a system for dispensing a product from a container. The system is especially suitable for use as part of, or as a dispensing closure for, a flexible container which is squeezable.
BACKGROUND OF THE INVENTION AND TECHNICAL PROBLEMS POSED BY THE PRIOR ART
There are a wide variety of packages which include (1) a squeezable container, (2) a dispensing system extending as a unitary part of, or attachment to, the container, and (3) a product contained within the container. One type of such a package employs a single dispensing valve for discharging a single stream of product (which may be a liquid, cream, or particulate product). See, for example, U.S. Pat. No. 5,839,614. The package includes a flexible, resilient, slit-type valve. The valve is normally closed and can withstand the weight of the product when the container is completely inverted, so that the product will not leak out unless the container is squeezed.
With some types of products, such as glue, hair coloring, condiments, and the like, it may be desirable to provide a dispensing system which can more accurately control the discharge of the product. In particular, it may be desirable to more precisely control the location of the deposit of the product and to provide a dispensing system for affording such control while at the same time permitting the user to clearly observe the product deposition location. It would also be advantageous if such an improved dispensing system could also more accurately control the direction in which the product is dispensed while at the same time providing a clear indication to the user as to the specific direction in which the product will be, or is being, dispensed.
Although a relatively long, narrow, tapered nozzle might be employed to facilitate the dispensing of a product in a way that would enable the user to more accurately control the product dispensing location and product dispensing direction, the use of such a long nozzle can create other problems. Specifically, the product within a long nozzle may continue to flow from the nozzle even after the desired amount of product has been dispensed.
For example, consider the situation when a relatively high viscosity product is being dispensed from an inverted, squeezable container through a relatively long nozzle. The long nozzle must be initially filled with fluid product as the container is inverted. The user, after inverting the container, is unable to tell exactly when the product will be discharged from the tip of the nozzle. With a relatively high viscosity product, the user will have to squeeze the container somewhat just to fill the nozzle, and the user thus cannot be sure when the nozzle has been filled and when the first drop of product will be discharging from the nozzle.
Further, when the user sees that the desired amount of product has been dispensed from the tip of the nozzle and deposited on the receiving surface, the user would typically stop squeezing the container. However, the amount of product within the nozzle may continue to flow out of the nozzle before the user can invert the container or otherwise move the system away from the dispensing location. Thus, such a system lacks the desired capability to precisely control the termination of the product flow from the nozzle.
Accordingly, it would be desirable to provide an improved dispensing system which could overcome, or at least minimize, the above-described product dispensing control problems.
It would also be desirable to provide an internal system for positively preventing flow of the product through the system regardless of the orientation of the container and regardless of whether or not the container was being squeezed or otherwise pressurized. Such an internal seal system should be easily actuatable to open the flow path when desired to accommodate the dispensing of the product and should be readily actuatable to close the flow path when desired so as to prevent inadvertent leakage of the product when the container is being shipped or stored where it might be subjected to external impact forces which could increase the pressure within the container or otherwise cause discharge of some amount of the product.
The U.S. Pat. No. 6,290,108 discloses a prior art dispensing system that includes an embodiment which has, inter alia, a long nozzle and which allows the user to (1) more easily ascertain the location where the product will be deposited, (2) more easily control the starting and stopping of the product flow out of the nozzle, and (3) employ a releasable internal seal for positively preventing flow of the product through the system regardless of the orientation of the container and regardless of whether or not the container is being squeezed or otherwise pressurized. However, when such a prior art system is employed in some applications, especially where the system has particular internal flow path dimensions and is used to dispense high viscosity fluent products (e.g., mustard or mayonnaise), there may be operational characteristics that a user might find objectionable in some situations. Potentially objectionable operational characteristics may be present in some applications because the system employs an internal seal in conjunction with a fixed spout over which is mounted a movable nozzle carrying a pressure-openable, flexible, slit type valve. The internal seal elements must first be opened (by moving the nozzle upwardly) to allow the user to squeeze the product through the pressure-openable valve. After such a prior art dispensing system has discharged a desired quantity of a high-viscosity product and the valve has re-closed, there is an accumulation of the product in the space between the top end of the spout and the closed valve. If the user then operates the system to close the internal seal by moving the nozzle (and valve carried therein) downwardly toward the spout, the squeezing of the viscous product between the downwardly moving valve and the top end of the spout may cause the valve to open so that some product flows out through the valve until the nozzle reaches the bottom end of its movement (where the internal seal is completely closed). This may be especially objectionable with a food product such as mustard or mayonnaise where a small amount of such a product would then remain on the exterior of the valve even though the user has finished dispensing the product and has manipulated the dispensing system so that the internal seal is fully closed. Thus, it would be desirable to provide an improved dispensing system which could accommodate relatively viscous products and which could be manipulated to establish a closed, internal seal in a way that causes only a minimal amount of, or no, flow through the flexible, slit valve as the dispensing system is manipulated to fully close the internal seal elements.
It would also be beneficial if an improved dispensing system could function without the need for a hinged lid which would have to be initially moved to an open position to permit dispensing and which, in the open position, could obscure a portion of the product dispensing stream or product discharge location from the user's view. It would also be desirable if such an improved dispensing system would not employ any other type of separate lid, overcap, or plug which would require removal prior to dispensing and which could become lost or misplaced.
It would also be advantageous if such an improved system could accommodate bottles, containers, or packages which have a variety of shapes and that are constructed from a variety of materials.
Further, it would be desirable if such an improved system could accommodate efficient, high-quality, large-volume manufacturing techniques with a reduced product reject rate to produce a system with consistent operating characteristics unit-to-unit with high reliability.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Closure with internal flow control for a pressure openable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Closure with internal flow control for a pressure openable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Closure with internal flow control for a pressure openable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2880764

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.