Dispensing – With flow controller or closure – Plural and/or carried by separably attached element
Reexamination Certificate
2000-07-11
2003-08-26
Shaver, Kevin (Department: 3754)
Dispensing
With flow controller or closure
Plural and/or carried by separably attached element
C215S216000, C215S219000
Reexamination Certificate
active
06609637
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a closure cap interacting with a bottle container, a latching projection being provided on the bottle container and a latching arm being provided on the closure cap together with an undergripping projection for interacting with the latching projection.
A closure cap of this type, which can be latched to the neck of a bottle container, is disclosed by DE-C 33 45 350. In this, the latching arm, which is arranged as a pair, is formed by snap-in fingers which extend from the top of the closure cap and continue on the neck side into each undergripping projection. The back of the two latching arms is supported by moulded-on strips. The webs are rooted in the inner of a dome. wall of the closure cap which is shaped in the manner
SUMMARY OF THE INVENTION
It is an object of the invention to provide a closure cap which is of the type in question, can be connected to a bottle container and which latches securely, despite use of a construction which saves on materials to a maximal extent.
This object is first and foremost achieved in the case of a closure cap together with a bottle container having the features of claim 1, in which it is provided that the undergripping projection is provided on a circumferentially encircling ring which, in the circumferential direction, has a length store which is sufficient to overrun the latching projection and is useable with elastic resetting. A ring of this type can spring up as a neck loop. Having passed over the latching projection, which is generally formed by an annular bead, of the bottle container, the ring, by partially using to completely exhausting the length store, briefly proceeds towards the ideal circumferential structure in order then to constrict again under the action, which is then released, of the return force of the ring. All this can be achieved with the ring wall being of maximum thinness. This signifies a saving in material. Its relatively large constructional extent runs, of course, in the plug-in direction. A long rectangular cross section of a ring of this type is sufficient to reliably pass over the latching projection provided on a bottle neck having a discharge opening. If no control means are provided, latching to the bottle neck and the bottle container, respectively, is then irreversible. Provision is furthermore made for the latching arm to run substantially parallel to a central axis of the discharge opening. This permits the transmission of sufficient springing-up forces. A particularly stable latching arm is achieved if the latter participates in the annular shape. An advantageous solution is achieved if two substantially mutually opposite latching arms are provided. The length store is achieved in simple manner on account of a wavy formation of the ring. In this arrangement, it suffices if only part of the ring is undulated in the circumferential direction. However, that zone of the length store which deviates from a normal circular/annular contour can also be realised by the length store being provided by a resilient capability in the region of connection to the latching arm of the ring. This applies correspondingly to both latching arms, to be precise on both sides. Provision is furthermore made for the ring to run substantially perpendicularly with respect to the latching arms. Alternatively, a solution is also conceivable and advantageous according to which the ring encloses an acute angle with the latching arms in a lateral projection. In this arrangement, it is furthermore of advantage for the ring which runs at an acute angle to consist of two substantially opposite sections covering the same height range. In this solution, there is the basis of the control indicated above if the closure cap is to be reversibly associated with the bottle container. Accordingly, the latching projection on the bottle container is then formed as a mating thread. The mating thread can likewise be passed over by spring action, but, on the other hand, provides the possibility of screwing the cap down and unscrewing it. There is preferably a steep thread, preferentially a two-start thread. In this arrangement, the resultant interruption to the corresponding threads can furthermore advantageously be used to the effect that an end surface, facing in the circumferential direction, of one thread interacts with a stop surface provided on the ring or the latching arm. This can be used as a screwing-down limit. The end surface merely needs to be arranged such that it is sufficiently steep. The said stop surface on the inside of the latching arm is realised in the form of a substantially vertically extending stop strip. This is moulded onto the latching arm and has a stiffening effect on it, providing a type of T-profile even with a short T-web. Furthermore, by means of a bent portion facing away from the circumferential direction, the ring is provided with a stop surface which secures against self-releasing unscrewing. In advantageous manner, said bent portion is provided on the latching arm of the ring. It can likewise interact with a corresponding mating surface of the thread. However, it is specifically preferred for the stop surface to be provided on a separate stop projection of the bottle container. The projection is expediently located in the region of the screwing-down end position. In addition, it has proven advantageous in this arrangement for the stop surface to be aligned in such a manner that a forced overrunning and elastic deflection of the ring is made possible. The return path therefore becomes free for intentional unscrewing of the closure cap. Provision is moreover made in this arrangement for the stop projection to have a bevel which can be overrun in the screwing-down direction of the closure cap. If the irreversible variant is resorted to, the stop surface merely needs to lie transversely with respect to the direction of rotation of the closure cap, i.e., for example, to face radially towards the geometrical rotational axis. Even a hooking undercut can be used. Furthermore, on a closure cap of the type in question, in which the closure cap has a central collar for engaging in a discharge opening of the bottle container, it is above all advantageous in terms of fitting for the collar to have a lead-in bevel for interacting with a rim of the discharge opening. The lead-in bevel, which is, for example, rotationally symmetrical, provides an effective means for precentring with respect to the edge. When docking the two parts, a collision therefore no longer happens so easily when the component to be fitted is not applied linearly. Even a relatively slight tapering, on the external edge, of the free end of the collar suffices. It is therefore already virtually sufficient if the lead-in bevel extends inwards at least by the extent of one wall thickness of the collar. In any case, one is on the safe side if the lead-in bevel has a dimension which is a multiple of the wall thickness of the collar. This may amount to as much as five times. It is advantageous if the lead-in bevel is formed from a plurality of separate lead-in tongues. The latter have a rounded portion typical of tongues and can also, in terms of the wall, lip out towards the free end. As has been found, four lead-in tongues distributed at equal angular spacings are sufficient. A contribution on the container towards the corresponding centring of the elements to be connected by plugging-in techniques consists in the inner edges of the rim of the bottle neck being chamfered. The invention furthermore proposes that in the case of a completely closed construction, the closure cap has a separately arranged covering part on the outside. The latter may be a carrier of information etc. For the selection of colour etc., it is favourable for the covering part to be latch-mounted on the closure cap. With regard to the dome-shaped or flat dome-shaped form of the closure cap, it is of advantage for the covering part to be formed in the manner of a spherical cap. A good connection base is provided if the closure
Alpla Weke Alwin Lehner GmbH & Co.KG
Farber Martin A.
Shaver Kevin
Willatt Stephanie
LandOfFree
Closure cap interacting with a bottle receptacle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Closure cap interacting with a bottle receptacle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Closure cap interacting with a bottle receptacle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3087556