Closely spaced antenna array

Communications: radio wave antennas – Antennas – Balanced doublet - centerfed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S799000, C343S802000, C343S810000, C343S820000

Reexamination Certificate

active

06369770

ABSTRACT:

BACKGROUND OF THE INVENTION
Code Division Multiple Access (CDMA) communication systems may be used to provide wireless communication between a base station and one or more subscriber units. The base station is typically a computer controlled set of switching transceivers that are interconnected to a land-based public switched telephone network (PSTN). The base station includes an antenna apparatus for sending forward link radio frequency signals to the mobile subscriber units. The base station antenna is also responsible for receiving reverse link radio frequency signals transmitted from each mobile unit. Each mobile subscriber unit also contains an antenna apparatus for the reception of the forward link signals and for transmission of the reverse link signals. A typical mobile subscriber unit is a digital cellular telephone handset or a personal computer coupled to a wireless cellular modem.
The most common type of antenna used to transmit and receive signals at a mobile subscriber unit is a omni-directional monopole antenna. This type of antenna consists of a single wire or antenna element that is coupled to a transceiver within the subscriber unit. The transceiver receives reverse link signals to be transmitted from circuitry within the subscriber unit and modulates the signals onto the antenna element at a specified frequency assigned to that subscriber unit. Forward link signals received by the antenna element at a specified frequency are demodulated by the transceiver and supplied to processing circuitry within the subscriber unit. In CDMA cellular systems, multiple mobile subscriber units may transmit and receive signals on the same frequency and use coding algorithms to detect signaling information intended for individual subscriber units on a per unit basis.
The transmitted signal sent from a monopole antenna is omnidirectional in nature. That is, the signal is sent with the same signal strength in all directions in a generally horizontal plane. Reception of signals with a monopole antenna element is likewise omnidirectional. A monopole antenna does not differentiate in its ability to detect a signal on one direction versus detection of the same or a different signal coming from another direction.
SUMMARY OF THE INVENTION
Various problems are inherent in prior art antennas used on mobile subscriber units in wireless communications systems. Typically, an antenna array with scanning capabilities consists of a number of antenna elements located on top of a ground plane. For the subscriber unit to satisfy portability requirements, the ground plane must be physically small. For example, in cellular communication applications, the ground plane is typically smaller than the wavelength of the transmitted and received signals. Because of the interaction between the small ground plane and the antenna elements, which are typically monopole elements, the peak strength of the beam formed by the array is elevated above the horizon, for example, by about 30°, even though the beam itself is directed along the horizon. Correspondingly the strength of the beam along the horizon is about 3 db less than the peak strength. Generally, the subscriber units are located at large distances from the base stations such that the angle of incidence between the subscriber unit and the base station is approximately zero. The ground plane would have to be significantly larger than the wavelength of the transmitted/received signals to be able to bring the peak beam down towards the horizon. For example, in an 800 Mhz system, the ground plane would have to be significantly larger than 14 inches in diameter, and in a PCS system operating at about 1900 Mhz, the ground plane would have to be significantly larger than about 6.5 inches in diameter. Ground planes with such large sizes would prohibit using the subscriber unit as a portable device.
Another disadvantage of existing prior art antennas utilizing flat ground planes is that as the ground plane dimensions are reduced in size, the array input impedance becomes highly sensitive to the environment, for example, when the array is placed on a metal surface or table, because the external environment directly couples with the antenna. That is, the external environment becomes part of the antenna. If the dimensions of the ground plane are increased to a sufficient size, this coupling problem is minimized. However, the large size of these ground plans may be undesirable in many applications. Shaped ground planes have been used to pull the beam of monopole arrays down towards the horizon. These shaped ground planes have large three dimensional features. Thus, it is desirable to force the beam down towards the horizon with an antenna structure that is not too large and unwieldy.
The present invention greatly reduces problems encountered by the aforementioned prior art antenna systems. The present invention provides an inexpensive antenna array for use with a mobile subscriber unit in a wireless same frequency network communications system, such as CDMA cellular communication networks. The invention utilizes a multiplicity of resonant strips provided within the ground plane. These strips couple to an equal multiplicity of monopole array elements located on top of the ground plane. This approach increases antenna gain by more efficiently utilizing the available ground plane area. Additionally, since the active element is on top of the ground plane, the antenna array sensitivity is decreased because the direct coupling between the antenna and external environmental factors is minimized.
The multiplicity of antenna elements are electrically isolated from the ground plane. Each antenna element has a bottom end located proximal to the ground plane, and is aligned along a respective antenna axis that is substantially perpendicular to the top side. Each resonant strip has a top end electrically connected to the ground plane and a bottom end spaced apart from a bottom side of the ground plane, and is aligned along the antenna axis of a corresponding antenna element. The multiplicity of antenna elements and the multiplicity of resonant strips are equally spaced about the perimeter of the ground plane, and the combination of each antenna element with a respective resonant strip provides a unbalanced dipole antenna element so that the multiplicity of dipole antenna elements form a composite beam which may be positionally directed along a horizon that is substantially parallel to the ground plane. Typically, at least one antenna element is connected to a transmission feed line for receiving signals from and transmitting signals to the antenna element.
Embodiments of this aspect can include one or more of the following features. The ground plane can be cylindrical such that the top side of the ground plane is a planar end of the cylinder, and the bottom side of the ground plane is an opposite planar end of the cylinder. In this arrangement, each resonant strip is disposed within a respective slot of the ground plane. The walls of each slot are spaced apart from the surface of the resonant strip, and the space between the walls and the surface is filled with nonmetallic material to electrically isolate a non-top end portion of the resonant strip from the ground plane. The ground plane, the antenna elements, and the resonant strips are made of copper, and the nonmetallic material is typically made of PCB materials such as polystyrene or Teflon.
The ground plane can be made of a multiplicity of plates equal in number to the multiplicity of resonant strips. Each plate has an outer edge and an inner edge. The resonant strips are aligned along the outer edge of a respective plate, and the inner edges of the plates are joined together at the center of the ground plane forming a central joint with an axis that is substantially parallel to the axes of the resonant strips. The central joint is a hinge which facilitates collapsing the antenna apparatus into a flat compact unit. Each plate includes a first nonmetallic substrate and a first conductive material layered over one side of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Closely spaced antenna array does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Closely spaced antenna array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Closely spaced antenna array will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892291

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.