Closely-positioned multiple GBIC connectors

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S730000, C361S808000, C361S809000, C361S829000, C361S810000, C439S079000, C385S092000

Reexamination Certificate

active

06272019

ABSTRACT:

The present invention relates to a method and apparatus for providing two or more gigabit interface converter (GBIC) connectors which are relatively closely spaced and in particular to providing multiple GBIC connectors to achieve efficient use of a panel area or other region.
BACKGROUND INFORMATION
Numerous types of connectors for providing coupling to cables, fiber optic lines, or other communication media are used in various electronic devices including network devices such as network routers, switches, bridges, gateways and the like. As needs for communication links and/or connectors having various characteristics arise, different connector configurations give rise to standards defining the shape and size of the connectors or their components. One such type of connector is termed a gigabit interface converter (GBIC). In accordance with published or defacto standards, the GBIC includes a face region generally rectangular in shape, and having a size of approximately 1.2 inches by 0.3 inches (about 3 cm by 0.75 cm). This face region represents the region to which users typically will need or want to have access, such as for making connections. Accordingly, when a GBIC is to be part of an apparatus, such as a network router, the GBIC is positioned in the router such that the GBIC face region is accessible to the user. Typically this involves positioning in a portion of an accessible surface of the router cabinet such as preferably, the face plate of the router cabinet.
A number of published and/or de facto standards have emerged to define preferred shapes and sizes for many electronic components such as network routers. For example, particularly when a router is to be compatible with rack-mounting, it is desirable to provide the router cabinet with a face plate having a size of about 1¾ inches by about 17½ inches (about 4.5 cm by about 45 cm). Such a size is compatible with the so-called 1RU form factor. When the face panel (or other surface) of an electronic device, such as a router, needs to have numerous components, such as numerous connectors, signal lights or other displays, switches and the like, it becomes important to make efficient use of the available surface area of the front panel (or other surface), particularly when it is desired for the front panel to be sized and shaped in accordance with the RU form factor or other published or de facto standard (which limits the surface area available for such components). Accordingly, when a network router or other electronic component is to be provided with two or more GBICs, it would be useful to provide for mounting of the GBICs in a fashion which is achieves space efficiency of the face plates with respect to the two or more GBIC connectors.
When GBICs are mounted using GBIC frames for holding the GBICs, there are numerous costs and other advantages to employing GBIC frames which correspond to published or de facto GBIC frame standards. Accordingly, it would be useful to provide for mounting of two or more GBIC frames in a space-efficient manner substantially without requiring modification of a standard GBIC frame configuration.
As GBIC designs have emerged, GBIC frames typically, are configured to accommodate a single GBIC and to accommodate mounting on or with respect to a circuitry component which is a printed circuit board (PCB), with a separate mounting device provided for each GBIC. It is believed that, in general, standard GBIC frame designs were developed at time periods when a single GBIC per router was considered adequate. Current systems, however, make it increasingly useful to provide two or more GBICs in a router. Accordingly, it would be useful to provide a method and apparatus for mounting multiple GBICs preferably using substantially standard GBIC frames, in a manner which is space-efficient.
Achieving closely-spaced mounting of two or more GBICs places constraints on the amount of volume defined between the GBICs (or otherwise in the vicinity of the GBICs). However, in a typical application, certain electronic components such as serializer-deserializer (“SerDes”) chips, should preferably be positioned relatively close to the GBICs such as within about 2 inches (5 cm), more preferably, about 1 inch (about 2.5 cm) or less.
In some designs, short signal paths can be difficult to implement. For example, relatively long signal paths may be necessary when such components are positioned on a PCB which is separate from the PCB to which the GBIC is mounted or otherwise directly coupled. Accordingly, it would be useful to provide a method and apparatus for mounting two or more GBICs in a space-efficient fashion while permitting the coupling of SerDes chips, or other electronic components to the GBICs with signal paths less than about 2 inches (about 5 cm).
In addition to the electrical connection between the GBIC and one or more PCBs or other circuit components, the integrity of the mechanical coupling between the GBIC and associated PCBs can be of importance in maintaining the desired electrical connections, especially in the face of jostling or movement that can result as cables, fiber optics and the like are engaged or disengaged with the device. Accordingly, it would be useful to provide a method and apparatus for mounting two or more GBICs which achieves or enhances the mechanical support of the GBIC e.g. with respect to a PCB or other component.
In a typical configuration, a GBIC connector is mounted substantially directly on one or another surface of a PCB board (such as a “motherboard”). Typically, the motherboard will be positioned along the long axis of the chassis and with the plane of the motherboard perpendicular to the plane of the faceplate. In some configurations, a GBIC is mounted with the long axis of its face parallel to the plane of the motherboard (i.e. with the long axis of the GBIC face parallel to the long axis of the chassis faceplate). This provides a relatively favorable height requirement in the sense that such a configuration can readily be contained within the 1.75 inch (about 44.5 mm), maximum height of an RU form factor faceplate. however, this means each GBIC will occupy at least about 1.44 inches (about 3.5 cm) out of the maximum 17.5 inch (about 44.5 cm) lateral space available for the RU form factor, thus limiting the number of GBICs that can be mounted with respect to an RU face plate. Of course, the amount of lateral dimension occupied by GBIC connectors can be reduced by mounting the GBICs with the long axis of the GBIC face perpendicular to the long axis of the faceplate (and thus, typically perpendicular to the motherboard). Unfortunately, it proves infeasible to accommodate the full height of a GBIC connector plus the thickness of the motherboard plus an allowance for airspace, cabinet wall thickness and like, within an RU height form factor (i.e. 1.75 inches or about 44.5 cm). Accordingly, it would be useful to provide a configuration for mounting a GBIC connector with respect to a circuit board which permits the GBIC to have the long axis of the GBIC face perpendicular to the long axis of the RU face plate, yet still configure the router or other device within an RU height form factor of about 1.75 inches (about 44.5 mm).
SUMMARY OF THE INVENTION
The present invention includes the recognition of problems that arise in going from an apparatus or system having a single GBIC connector to one which has two or more GBIC connectors. In one aspect, the present invention includes providing an attachment plate configured to receive and/or accommodate two GBIC frames which are positioned in back-to-back fashion (i.e. with corresponding surfaces facing each other). This results in a configuration in which the frames are in a mirror-image (“back-to-back”) configuration with respect to one another about a plane passing tlirough the attachment plate. Preferably the attachment plate itself is also mirror-symmetric about a plane passing through its midline. In one embodiment the attachment plate is electrically and/or mechanically (preferably both) coupled to a PCB. By co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Closely-positioned multiple GBIC connectors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Closely-positioned multiple GBIC connectors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Closely-positioned multiple GBIC connectors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2541342

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.