Closed loop control of nip width in a fuser system

Electrophotography – Control of electrophotography process – Control of fixing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06819890

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to a fuser system that includes a closed loop control that controls a fuser's nip width by monitoring a representative media or component velocity and enables appropriate adjustment of the nip width over time, and to a method of controlling the nip width in such fuser system.
2. Description of Related Art
In the art of xerography or other similar image reproducing arts, a latent electrostatic image is formed on a charge-retentive surface, i.e., a photoconductor or photoreceptor. To form an image on the charge-retentive surface, the surface is first provided with a uniform charge after which it is exposed to a light or other appropriate image of an original document to be reproduced. The latent electrostatic image thus formed is subsequently rendered visible by applying any one of numerous toners specifically designed for this purpose.
It should be understood that for the purposes of the present invention, the latent electrostatic image may be formed by means other than by the exposure of an electrostatically charged photosensitive member to a light image of an original document. For example, the latent electrostatic image may be generated from information electronically stored or generated, and this information in digital form may be converted to alphanumeric images by image generation electronics and optics. The particular method by which the image is formed is not critical to the present invention, and any such suitable method may be used.
In a typical xerographic device, the toner image formed is transferred to an image receiving substrate such as paper. After transfer to the image receiving substrate, the image is made to adhere to the substrate using a fuser apparatus. To date, the use of simultaneous heat and contact pressure for fusing toner images has been the most widely accepted commercially, the most common being systems that utilize a pair of pressure engaged rolls.
The use of pressure engaged rolls for fixing toner images is well known in the art. See, for example, U.S. Pat. Nos. 6,289,587, 5,998,761, 4,042,804 and 3,934,113.
At the time of initial set-up of a xerographic device, the fuser system is set to be within certain specifications for, e.g., dwell time (nip width/process speed), paper velocity and creep. Dwell time is one of the more significant drivers of image fix and quality. Paper velocity is an important factor in paper handling. Creep, which is the release surface's extension in the nip, is important with respect to enabling self-stripping of the paper from the fuser roll. These specifications are set by, for example, setting a roll rotation speed for the paper velocity and setting the nip width for the dwell time and creep.
Once initially set, the nip width of a typical fuser is not changed during operation of the xerographic device. Unfortunately, several internal and external factors can cause the fuser system to drift outside of the designated specifications. For example, in a typical soft-on-hard roll pair in which the soft roll is the driving roll, the fuser system may begin operating outside of specifications due to, e.g., hardening of the roll materials over time. Typical fuser roll systems include some materials such as silicone materials that tend to become harder over time at unpredictable rates. This hardening causes large reductions in both dwell time and creep, which causes premature failure (e.g., smaller nip widths that lead to insufficient fixing of the toner image and/or poor image quality, as well as to poor stripping of the image receiving substrate).
In addition to these failure modes, it is at times desired that the nip width in a fuser be altered on demand. For instance, the fusing quality on thick paper is improved with large nip widths, and the fusing quality on thin papers is often improved with small nip widths. The fusing latitude in the presence of varied media and images, therefore, is improved if the nip width can be accurately set and controlled.
Typically, resetting the nip width to improve fusing latitude or to compensate for system failures due to the fuser system falling out of specifications has been dealt with by either (a) having a technician re-set the nip on site and/or (b) setting the nip width far above specifications at the factory, permitting the device to operate longer before falling out of specification. However, each of these ‘solutions’ has serious problems. Using technicians to reset the nip requires an on site visit by a technician and down time of the device. Initially setting the nip width high above specifications usually causes paper handling and stripping issues, especially with lightweight papers.
What is required is an improved inline method where the machine itself measures and adjusts the nip width to maintain the fuser system within operational specifications.
SUMMARY OF THE INVENTION
The present invention provides a fuser system of a xerographic device, comprising one or more sets of a fuser member and a pressure member in which the pressure member is made to exert pressure upon the fuser member so as to form a nip having a nip width between the fuser member and the pressure member, wherein the nip width is set to within a specification nip width range, at least one sensor for monitoring the velocity of the driven member or the velocity of a media passing through the nip, a processor in communication with the at least one sensor and that receives this velocity data from the at least one sensor, wherein the processor determines a current nip width from the velocity data and compares the current nip width to the specification nip width range, and a nip width adjustment device in communication with the processor, which adjusts the current nip width to be within the specification nip width range.
The present invention also provides a xerographic device comprising at least a toner image forming station, a transfer station to transfer the toner image to an image receiving substrate, and the fuser system of the invention to fix the toner image to the image receiving substrate.
The present invention also provides a method for closed loop control of a nip width associated with a set of a fuser member and a pressure member in which the pressure member is made to exert pressure upon the fuser member so as to form a nip having a nip width between the fuser member and the pressure member, wherein the nip width is set to within a specification nip width range, comprising monitoring the velocity of the driven member or the velocity of a media passing through the nip, providing this velocity to a processor, wherein the processor determines a current nip width from the roll velocity and compares the current nip width to the specification nip width range, and when the current nip width is outside the specification nip width range, adjusting the current nip width so as to be within the specification nip width range.


REFERENCES:
patent: 3934113 (1976-01-01), Bar-on
patent: 4042804 (1977-08-01), Moser
patent: 5053829 (1991-10-01), Field et al.
patent: 5436711 (1995-07-01), Hauser
patent: 5998761 (1999-12-01), Berkes et al.
patent: 6169862 (2001-01-01), Abe et al.
patent: 6289587 (2001-09-01), Battat et al.
patent: A 61-18982 (1986-01-01), None
patent: A 63-13088 (1988-01-01), None
patent: 10207318 (1998-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Closed loop control of nip width in a fuser system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Closed loop control of nip width in a fuser system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Closed loop control of nip width in a fuser system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3351557

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.