Closed loop catheter coolant system

Surgery – Instruments – Cyrogenic application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S020000

Reexamination Certificate

active

06682525

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not Applicable.
BACKGROUND OF THE INVENTION
The present invention relates to a coolant system for a catheter or treatment wand used for cryotreatment of tissue. In particular, the coolant system is of the type which connects to a catheter and pumps coolant through the catheter to chill the tip of the catheter for stunning or ablating tissue, such as cardiac wall tissue, for mapping or treatment purposes. The invention also contemplates ablation systems for non-cardiac tissue, employing, for example, a hand-held treatment wand rather than a catheter delivery system. For purposes of illustration herein, the discussion will be directed primarily to endovascular ablation catheters of the type available for treating cardiac arrhythmias.
A number of cooled catheter systems have been developed for treating tissue in a cardiac setting, either to cool the tissue sufficiently to stun it and allow cold mapping of the heart and/or confirmation of catheter position with respect to localized tissue lesions, or to apply a more severe level of cold to ablate tissue at the site of the catheter ending. In general, the range of treatments which may be effected by a cryocatheter is comparable to the range of applications for RF or thermal ablation catheters, and in particular, these instruments may be configured to achieve either small localized ball shape lesions at the tip of the catheter, or one or more elongated linear lesions extending a length of several centimeters or more along the tip. The latter form of lesion is commonly used to achieve conduction block across a region of the cardiac wall so as to sever a re-entrant pathway, preventing conduction across the region, in order change the cardiac signal path topology, for example, to eliminate a re-entrant pathway responsible for atrial fibrillation or a tachycardia.
In general, when used for endovascular access to treat the cardiac wall, catheters of this type, in common with the corresponding earlier-developed radio frequency or electrothermal ablation catheter, must meet fairly demanding limitations regarding their size, flexibility, and the factors of strength, electrical conductivity and the like which affect their safety and may give rise to failure modes in use. These constraints generally require that the catheter be no larger than several millimeters in diameter so as to pass through the vascular system of the patient to the heart. Thus, any electrodes (in the case of mapping or RF/electrothermal ablation catheters), and any coolant passages (in the case of cryocatheters) must fit within a catheter body of small size.
A number of different fluids have been used for the coolant component of prior art cryotreatment catheters. Among these may be mentioned a cool liquid such as a concentrated saline solution or other liquid of suitably low freezing point and viscosity, and of suitably high thermal conductivity and heat capacity, or a liquified gas such as liquid nitrogen. In all such constructions, the coolant must circulate through the catheter, thus necessitating multiple passages leading to the cooling area of the tip from the catheter handle.
Furthermore, conditions of patient safety must be considered, raising numerous problems or design constraints for each particular system. Thus for example, a high pressure may be required to circulate sufficient coolant through the catheter body to its tip and back, and the overall design of a catheter must be such that fracture of the catheter wall or leakage of the coolant either does not occur, or if it occurs, is harmless. Further, for an endovascular catheter construction, the presence of the coolant and circulation system should not substantially impair the flexibility or maneuverability of the catheter tip and body.
To some extent these considerations have been addressed by using a phase change material as the cryogenic fluid, and arranging the catheter such that the phase change, e.g., from a liquid to a gas, occurs in the treatment portion of the catheter tip. Another possible approach is to employ a pressurized gas, and configure the catheter for cooling by expansion of the gas in the tip structure. However, owing to the small size that such a catheter is required to assume for vascular insertion, or the awkwardness of handling a cryogenic treatment probe generally, the design of a safe and effective coolant circulation system which nonetheless dependably provides sufficient cooling capacity at a remote tip remains a difficult goal.
Among other common problems to be addressed while providing adequate thermal capacity, may be noted the leakage problem mentioned above, the problem of effectively preventing the catheter as a whole from being excessively cold or damaging tissue away from the intended site, and the problem of conduit or valve blockage owing for example to ice particles and the like.
Accordingly, it would be desirable to provide a coolant system which conveniently attaches to a cryocatheter.
It would also be desirable to provide a closed loop coolant system which injects and retrieves the coolant from the catheter to allow continuous operation without leakage into the environment or other loss of coolant.
It would further be desirable to provide a closed loop treatment system which precisely controls ablation and treatment regimens by conditioning the coolant supply side of a closed loop.
SUMMARY OF THE INVENTION
These and other desirable features are obtained in a coolant system for a cryoablation or treatment probe such as a mapping or ablation catheter, or a treatment wand, which includes a compressor and condenser having a low pressure inlet side and a high pressure outlet side, wherein the outlet side passes through a heat exchanger to be cooled by the inlet side and conditioned for injection to a catheter inlet, and further comprising a vacuum return system connectable to the catheter outlet to cause thermally expended coolant from the catheter to flow through the vacuum system and be returned to the low pressure inlet side. A motorized pressure regulator between the heat exchanger and the catheter inlet determines the flow rate of coolant passing into the catheter and thus regulates the cooling power for a selected mapping or ablation regimen.
Preferably, the low pressure inlet operates at relatively low temperatures so that heat exchange conditions the relatively warm pressurized coolant to ambient temperature or colder before injection into the catheter, allowing the coolant to travel at near ambient temperature to the tip before expansion and cooling to perform mapping or ablation as appropriate. In a preferred embodiment, a coolant reservoir feeds into the low pressure inlet side and receives a return flow of excess fluid from a branch off the outlet side of the compressor. The vacuum return assures that coolant does not leak into the blood stream, and preferably various check valves and bypass valves operate in the event of pressure buildup to return fluid to the inlet or supply loops. The coolant mixture preferably has a boiling point of approximately −60° Fahrenheit at about one atmosphere, and may be compressed to several hundred psi. The entire system is amenable to microprocessor control for providing ablation cooling cycles to operate the catheter tip in accordance with a selected protocol, and for effecting system functions such as recharging and venting of the coolant supply, and shutting down during nonuse or upon occurrence of a fault condition.


REFERENCES:
patent: 5423811 (1995-06-01), Imran et al.
patent: 5674218 (1997-10-01), Rubinsky et al.
patent: 5758505 (1998-06-01), Dobak, III et al.
patent: 5800493 (1998-09-01), Stevens et al.
patent: 6051019 (2000-04-01), Dobak, III
patent: 6190378 (2001-02-01), Jarvinen
patent: 6197045 (2001-03-01), Carson
patent: 6306129 (2001-10-01), Little et al.
patent: WO 99/56639 (1999-11-01), None
patent: WO 99/56640 (1999-11-01), None
patent: WO 99/56641 (1999-11-01), None
patent: WO 00/35362 (2000-06-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Closed loop catheter coolant system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Closed loop catheter coolant system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Closed loop catheter coolant system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3189461

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.