Cloned DNA polymerases from Thermotoga neapolitana and mutants t

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Transferase other than ribonuclease

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4352523, 43525233, 435325, 435419, 536 232, C12N 912, C12N 1554

Patent

active

059393017

ABSTRACT:
The invention relates to a substantially pure thermostable DNA polymerase from Thermotoga neapolitana (Tne) and mutants thereof. The Tne DNA polymerase has a molecular weight of about 100 kilodaltons and is more thermostable than Taq DNA polymerase. The mutant Tne DNA polymerase has at least one mutation selected from the group consisting of (1) a first mutation that substantially reduces or eliminates 3'.fwdarw.5' exonuclease activity of said DNA polymerase; (2) a second mutation that substantially reduces or eliminates 5'.fwdarw.3' exonuclease activity of said DNA polymerase; (3) a third mutation in the O helix of said DNA polymerase resulting in said DNA polymerase becoming non-discriminating against dideoxynucleotides. The present invention also relates to the cloning and expression of the wild type or mutant Tne DNA polymerase in E. coli, to DNA molecules containing the cloned gene, and to host cells which express said genes. The Tne DNA polymerase of the invention may be used in well-known DNA sequencing and amplification reactions.

REFERENCES:
patent: H1531 (1996-05-01), Blumentals et al.
patent: 4795699 (1989-01-01), Tabor et al.
patent: 4889818 (1989-12-01), Gelfand et al.
patent: 5047342 (1991-09-01), Chatterjee
patent: 5614365 (1997-03-01), Tabor et al.
patent: 5624833 (1997-04-01), Gelfand et al.
Derbyshire et al., The 3'-5' exonuclease of DNA polymerase I of Escherichial coli: contribution of each amino acid at the active site to the reaction, EMBO J. 10: 17-24 (1990).
Derbyshire et al., Genetic and Crystallographic Studies of the 3',5'-Exonucleolytic Site of DNA Polymerase I, Science, vol. 240, 199-201 (1988).
Polesky et al., Side Chains Involved in Catalysis ofthe Polymerase Reaction of DNA Polymerase I from Escherichia coli, The Journal of Biological Chemistry, vol. 267, No. 12: 8417-8428 (1992).
Antonio Bernad et al., A Conserved 3'-5' Exonuclease Active Site in Prokaryotic and Eukaryotic DNA Polymerases, Cell, vol. 59: 219-228 (1989).
Slater et al., "DNA Polymerase I of Thermatoga Neopolitane (Tne) and Mutant Derivatives," Seventh International Genome Sequencing and Analysis Conference, Sep. 16-20, 1995, Abstract.
Shengyu et al., Heat-Stable DNA Polymerase I Large Fragment Resolves Hairpin Structure In DNA Sequencing, Scientia Sinica (Series B), vol. XXX; 503-507 (1987).
Astatke, M., et al., "Deoxynucleoside Triphosphate and Pyrophosphate Binding Sites in the Catalytically Competent Ternary Complex for the Polymerase Reaction Catalyzed by DNA Polymerase I (Klenow Fragment)," J. Biol. Chem. 270(4):1945-1954 (Jan. 27, 1995).
Bergquist, P.L., et al., "Genetics and Potential Biotechnological Applications of Thermophilic and Extremely Thermophilic Microorganisms," Biotech. Genet. Eng. Rev. 5:199-244 (1987).
Blanco, L., et al., "Evidence Favouring the Hypothesis of a Conserved 3'-5' Exonuclease Active Site in DNA-dependent DNA Polymerases," Gene 112:139-144 (1992).
Braithwaite, D.K., and Ito, J., "Compilation, Alignment, and Phylogenetic Relationships of DNA Polymerases," Nucl. Acids Res. 21(4):787-802 (Feb. 25, 1993).
Chien, A., et al., "Deoxyribonucleic Acid Polymerase from the Extreme Thermophile Thermus aquaticus," J. Bacteriol. 127(3):1550-1557 (1976).
Darzins, A., and Chakrabarty, A.M., "Cloning of Genes Controlling Alginate Biosynthesis from a Mucoid Cystic Fibrosis Isolate of Pseudomonas aeruginosa," J. Bacteriol. 159(1):9-18 (1984).
Elie, C., et al., "Thermostable DNA Polymerase from the Archaebacterium Sulfolobus acidocaldarius. Purification, Characterization and Immunological Properties," Eur. J. Biochem. 178:619-626 (1989).
Freemont, P.S., et al., "A Domain of the Klenow Fragment of Escherichia coli DNA Polymerase I Has Polymerase but No Exonuclease Activity," Proteins 1(1):66-73 (1986).
Gerard, G.F., et al., "Poly(2'-0-methylcytidylate).cndot.Oligodeoxyguanylate as a Template for the Ribonucleic Acid Directed Deoxyribonucleic Acid Polymerase in Ribonucleic Acid Tumor Virus Particles and a Specific Probe for the Ribonucleic Acid Directed Enzyme in Transformed Murine Cells," Biochemistry 13(8):1632-1641 (1974).
Gutman, P.D., and Minton, K.W., "Conserved Sites in the 5'-3' Exonuclease Domain of Escherichia coli DNA Polymerase," Nucl. Acids Res. 21(18):4406-4407 (Sep. 11, 1993).
Huber, R., et al., "Thermotoga maritima sp. nov. Represents a New Genus of Unique Extremely Thermophilic Eubacteria Growing Up to 90.degree.C.," Arch. Microbiol. 144:324-333 (1986).
Huser, B.A., et al., "Isolation and Characterisation of a Novel Extremely Thermophilic, Anaerobic, Chemo-Organotrophic Eubacterium," FEMS Microbiol. Letts. 37:121-127 (1986).
Jannasch, H.W., et al., "Thermotoga neapolitana sp. nov. of the Extremely Thermophilic, Eubacterial Genus Thermotoga," Arch. Microbiol. 150(1):103-104 (May 1988).
Joyce, C.M., et al., "Nucleotide Sequence of the Escherichia coli polA Gene and Primary Structure of DNA Polymerase I," J. Biol. Chem. 257(4):1958-1964 (1982).
Joyce, C.M., "Can DNA Polymerase I (Klenow Fragment) Serve as a Model for Other Polymerases?," Curr. Opin. Struct. Biol. 1(1):123-129 (1991).
Joyce, C.M., and Steitz, T.A., "Function and Structure Relationships in DNA Polymerases," Annu. Rev. Biochem. 63:777-822 (Jul. 1994).
Kaboev, O.K., et al., "Purification and Properties of Deoxyribonucleic Acid Polymerase from Bacillus stearothermophilus," J. Bacteriol. 145(1):21-26 (1981).
Kaledin, A.S., et al., "Isolation and Properties of DNA Polymerase from Extremely Thermophilic Bacterium Thermus aquaticus YT1," Biokhimiya 45(4):644-651 (1980).
Kelly, R.M., and Deming, J.W., "Extremely Thermophilic Archaebacteria: Biological and Engineering Considerations," Biotechnol. Prog. 4(2):47-62 (1988).
Klimczak, L.J., et al., "Purification and Characterization of DNA Polymerase from the Archaebacterium Methanobcaterium thermoautotrophicum," Biochemistry 25:4850-4855 (1986).
Lin, T.-C., et al., "Cloning and Expression of T4 DNA Polymerase," Proc. Natl. Acad. Sci. USA 84:7000-7004 (1987).
Minkley, E.G., et al., "Escherichia coli DNA Polymerase I. Construction of a polA Plasmid for Amplification and an Improved Purification Scheme," J. Biol. Chem. 259(16):10386-10392 (1984).
Modak, M.J., and Marcus, S.L., "Purification and Properties of Rauscher Leukemia Virus DNA Polymerase and Selective Inhibition of Mammalian Viral Reverse Transcriptase by Inorganic Phosphate," J. Biol. Chem. 252(1):11-19 (1977).
Ollis, D.L., et al., "Structure of Large Fragment of Escherichia coli DNA Polymerase I Complexed with dTMP," Nature 313:762-766 (1985).
Polesky, A.H., et al., "Identification of Residues Critical for the Polymerase Activity of the Klenow Fragment of DNA Polymerase I from Escherichia coli," J. Biol. Chem. 265(24):14579-14591 (1990).
Rossi, M., et al., "Structure and Properties of a Thermophilic and Thermostable Polymerase Isolated from Sulfolobus solfataricus," System. Appl. Microbiol. 7:337-341 (1986).
Sagner, G., et al., "Rapid Filter Assay for the Detection of DNA Polymerase Activity: Direct Identification of the Gene for the DNA Polymerase from Thermus aquaticus," Gene 97:119-123 (1991).
Simpson, H.D., et al., "Purification and Some Properties of a Thermostable DNA Polymerase from a Thermotoga Species," Biochem. Cell Biol. 68:1292-1296 (1990).
Spadari, S., and Weissbach, A., "HeLa Cell R-Deoxyribonucleic Acid Polymerases. Separation and Characterization of Two Enzymatic Activities," J. Biol. Chem. 249(18):5809-5815 (1974).
Stenesh, J., and Roe, B.A., "DNA Polymerase from Mesophilic and Thermophilic Bacteria. I. Purification and Properties of DNA Polymerase from Bacillus licheniformis and Bacillus stearothermophilus," Biochim. Biophys. Acta 272:156-166 (1972).
Tabor, S., and Richardson, C.C., "A Single Residue in DNA Polymerases of the Escherichia coli DNA Polymerase I Family is Critical for Distinguishing Between Deoxy- and Dideoxyribonucleotides," Proc. Natl. Acad. Sci. USA 92:6339-6343 (Jul. 1995).
Windberger, E., et al., "Thermotoga thermarum sp. nov. and Thermotoga neapolitana Occurring in African Continental Solfataric Springs," Arch. Microbiol. 151(6):506-512 (May 1989).
A copy

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cloned DNA polymerases from Thermotoga neapolitana and mutants t does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cloned DNA polymerases from Thermotoga neapolitana and mutants t, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cloned DNA polymerases from Thermotoga neapolitana and mutants t will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-314442

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.