Clock recovery system using wide-bandwidth injection locked...

Oscillators – Automatic frequency stabilization using a phase or frequency... – Plural a.f.s. for a single oscillator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C331S025000, C331S034000, C375S376000

Reexamination Certificate

active

06369659

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a clock recovery system, and in particular to a high frequency, wide bandwidth clock recovery system.
Clock recovery is the process of synchronizing a local clock signal to a received data signal. That is, clock recovery time-aligns transitions in the received data signal with transitions of the local clock signal. When the local clock signal is synchronized to the received data signal, that clock signal may be used to synchronize the remainder of the signal processing circuitry in the receiver. Local oscillators in receivers are usually set during fabrication to a free-running frequency equal to the nominal frequency of the data signal. However, the frequency of the oscillator signal may not be set exactly to that nominal frequency, and/or the received data signal may not be at the nominal frequency, and/or the oscillator frequency may drift due to component aging in the oscillator or temperature variation during operation. When there are no data edges for a time, the oscillator is essentially free-running, and the phase of the free-running local oscillator will drift away from the phase of the received data signal.
In some cases, such as in test equipment, it is necessary that the clock recovery system have a relatively wide bandwidth. In such cases, injection-locked oscillators have been used. Injection-locked oscillators have a wide bandwidth, and are well suited for clock recovery systems used in such applications. An injection-locked oscillator, by itself, does not, however, correct the free-running frequency error in the local oscillator.
One solution to correcting the free-running frequency error in injection-locked oscillators is to periodically measure the free-running frequency of the oscillator when the circuit is not in service, and trim out the frequency error. This solution cannot be used, however, where the circuit is in use for long periods of time and where e.g. the temperature changes during operation, causing drift in the component characteristics and consequent drift in the free-running frequency of the oscillator.
Another solution to correcting the free-running frequency error in injection-locked oscillators is to measure the average (dc) phase error between the local oscillator clock signal and the received data signal. The dc phase error is proportional to the local oscillator free-running frequency error. The free-running frequency of the local oscillator is corrected to minimize the dc phase error. However, circuitry for measuring the dc phase error and correcting the free-running frequency is usually subject to the same changes (e.g. temperature changes) which cause the mistuning of the free-running frequency of the local oscillator in the first place.
Another solution to correcting the free-running frequency error in injection-locked oscillators is to include the injection-locked oscillator within a second order phase-locked loop. Such a phase-locked loop includes an integrator to eliminate the free running frequency error, described above. However, phase-locked loops which have the wide bandwidth required in such applications as test equipment are relatively complex. Second order phase-locked loops can be fabricated simply, but such loops have a relatively narrow bandwidth.
Another solution is disclosed in Ser. No. 091562,783 filed May 2, 2000 by Wolaver, incorporated by reference herein. In Ser. No. 091562,783 the inventor realized that in an injection locked oscillator the phase of the local clock signal is only adjusted (via the injection process) by transitions in the received data signal. In between those transitions, the relative phase between the received data signal and the local oscillator signal drifts due to the difference between the frequency of the received data signal and the free-running frequency of the local clock signal. The inventor also realized that during times where transitions in the received data signal are relatively sparse, the phase error will drift in one direction—as the local oscillator frequency drifts toward the free-running frequency. Similarly, during times where transitions in the received data signal are relatively dense, the phase error will be corrected in the opposite direction—as the local oscillator frequency is drawn back toward the frequency of the input signal. Thus, the inventor realized that by correlating the direction of the phase drift with the density of the transitions of the received data signal during operation of the system, the sign and magnitude of the free-running frequency error may be estimated. From this information, the free-running frequency of the local oscillator may be corrected to minimize the phase drift. Such correlation circuitry operates satisfactorily, but the circuitry can be relatively complex and expensive.
A clock recovery system using an injection-locked local oscillator to achieve wide bandwidth, and including a simple circuit for adjusting the free-running frequency of the local oscillator is desirable.
BRIEF SUMMARY OF THE INVENTION
In accordance with principles of the present invention, a clock recovery system includes a source of a data signal, and a free-running frequency adjustment circuit. The free-running frequency adjustment circuit includes an injection-locked oscillator having a free-running frequency and generating a clock signal and a phase locked loop, coupled in parallel with the injection locked oscillator, and generating a control signal adjusting the free running frequency of the injection locked oscillator.


REFERENCES:
patent: 4918406 (1990-04-01), Baumbach et al.
patent: 5650749 (1997-07-01), Main

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Clock recovery system using wide-bandwidth injection locked... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Clock recovery system using wide-bandwidth injection locked..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Clock recovery system using wide-bandwidth injection locked... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.