Miscellaneous active electrical nonlinear devices – circuits – and – Signal converting – shaping – or generating – Synchronizing
Reexamination Certificate
2001-07-20
2004-03-09
Nguyen, Minh (Department: 2816)
Miscellaneous active electrical nonlinear devices, circuits, and
Signal converting, shaping, or generating
Synchronizing
C327S161000, C327S175000, C375S376000, C331SDIG002
Reexamination Certificate
active
06703879
ABSTRACT:
BACKGROUND
The present invention relates to a clock generation circuit for generating an internal clock signal synchronized with an external clock signal and moreover a DLL (Delay Locked Loop) circuit which can adjust a duty ratio and moreover to the technique which can effectively be utilized for the clock generation circuit for generating the clock signal to determine the output timing, for example, in the SDRAM (Synchronous Dynamic Random Access Memory).
In recent years, attention has been paid to the SDRAM of the DDR (Double Data Rate) system, as a means for realizing higher data transfer rate of the SDRAM, for inputting and outputting the data in the doubled transmission rate of the input clock. In view of realizing the input/output of data in the higher transmission rate, the DDR SDRAM mounts a clock generation circuit called a DLL and a SMD for the matching between the phases of external clock and data output. This phase matching is required to acquire the sufficient set-up time of the output data for external clock. When the phase of external clock is matched with the phase of data output, the time required until the data is outputted from the input of the read command becomes equal to the integer times of the period of the external clock.
The official gazette of the Japanese Published Unexamined Patent Application No. HEI 6(1994)-29835 discloses, as illustrated in FIG. 16, a loop type phase adjusting circuit including a rising phase difference detecting means 33 for generating the first control signal VC1 indicating a phase difference by detecting the rising phase difference between the reference clock signal CREF and internal clock signal CIN and a falling phase difference detecting means 34 for generating the second control signal VC2 indicating a phase difference by detecting the falling phase difference between both clock signals. Meanwhile, the official gazette of HEI 11(1999)-15555 discloses a synchronization circuit corresponding to the DDR specifications for respectively executing independent phase comparison operations of the internal clock signal ICLKT-2R of the clock system generated from the rising edge of external clock signal ECLK and the internal clock signals ICLKT-2F and ICLKB-2F of the clock system generated from the falling edge of external clock signal ECLK.
The official gazette of HEI 9(1997)-321614 (corresponding U.S. Pat. No. 5,883,534) discloses, as illustrated in FIG. 2, a clock supply device 501 which is provided between the DLL apparatus 1 and a clock driver 3 and includes a waveform shaping device 2 as a duty ratio recovery device for converting the input clock IN having the desired duty ratio to the clock having the duty ratio of 50%.
The official gazette of HEI 11(1999)-17529 discloses a DLL circuit which is formed of a basic clock generation unit, a phase detecting unit, a phase adjusting unit and a circuit DCC11 for adjusting the duty of output stage to 50%.
The official gazette of HEI 10(1998)-264649 discloses a frequency multiplying circuit which is formed of a phase frequency detector 30 as a phase difference detector for detecting phase difference between the input signal f1 and the signal fed back from a voltage-controlled delay circuit 32 explained later, a loop filter 31 for outputting a control signal depending on the phase difference detected with the phase frequency detector 30, the aforementioned voltage-controlled delay circuit 32 for changing a delaying coefficient of the input signal depending on the control signal from the loop filter 31 and feeding back this input signal to the phase frequency detector 30, the first SR flip-flop 33 for outputting the signal of duty ratio of 25% by receiving a pair of output signals among the signals frequency-divided four signals which are sequentially outputted from the voltage-controlled delay circuit 32, the second SR flip-flop 34 for outputting the signal of duty ratio of 25% by receiving a pair of output signals among the frequency-divided four signals which are sequentially outputted from the voltage-controlled delay circuit 32 and an OR gate 35 for outputting the signal of duty ratio of 50% with logical OR calculation of the outputs of these first and second SR flop—flop circuits 33, 34.
The official gazette of HEI 11(1999)-86545 (corresponding U.S. Pat. No. 5,939,913) discloses the DLL circuit applied to the SDRAM of the DDR system.
The official gazette of HEI 10(1998)-150350 discloses a phase synchronous circuit including a synchronous Miller delay type synchronous circuit for generating the clock signal synchronized with the rising edge of external clock and a synchronous Miller delay type synchronous circuit for generating the clock signal which is deviated by the half-period from the rising edge of external clock in order to obtain the internal clock of the desired duty ratio not depending on the waveform of external clock signal by combining these two output clock signals.
SUMMARY OF THE INVENTION
The DLL (Delay Locked Loop) circuit used as a clock generation circuit delays the input clock and controls a degree of delay in order to generate the clock having the desired phase. However, in the DLL circuit of the related art generates difference of a degree of delay at the rising edge and falling edge of the clock due to the influence of unbalance of the circuit operation in the process of delaying the clock and thereby there is a possibility for generation of difference in the duty ratio of the input clock (ratio of high level period for one period) and the duty ratio of the output clock (hereinafter, referred to only as duty). In order to prevent deviation of duty of clock, the phase must be controlled independently at the rising edge and falling edge of the clock.
As the DLL circuit for individually controlling the amount of delay at both edges, discussion has been made for a variable delay circuit for individually controlling the amount of delay of the rising edge and falling edge of the clock and a circuit of the system including a phase comparator corresponding to both edges and for effectuating the feedback to the variable delay circuit through independent phase comparison at both edges.
Moreover, the DLL circuit including two kinds of delay circuits for both rising and falling edges to individually control the amount of delay of both edges has also been discussed.
Although various circuit systems have been proposed as the variable delay circuit for DLL, the inventors of the present invention have also discussed additionally that the available circuit may be limited in the case of using the variable delay circuit which can individually control the amount of delay of both rising edge and falling edge in order to prevent deviation of duty of the clock. Therefore, since a degree of freedom of design flexibility is lowered and the performance of the DLL circuit is determined with the performance of the variable delay circuit, limitation in the kind of variable delay circuit means limitation of performance of the DLL circuit.
Meanwhile, when the two kinds of delay circuits for rising and falling edges of the clock are used, there rises a problem that the circuit area and current dissipation of the system mounting the DLL circuit increase because the circuit size and current dissipation increase remarkably.
An object of the present invention is to provide a clock generation circuit for eliminating deviation of duty of the output clock which interferes the phase control to realize high precision phase control only by adding a simplified circuit.
The aforementioned and the other objects and novel features of the present invention will become apparent from the description of the present invention and the attached drawings thereof.
The summary of typical inventions among those disclosed in this specification will be explained as follows.
The present invention is provided with at least one input terminal, at least one output terminal, a fixed delay granting means for granting, to the input signal, the predetermined delay corresponding to the period from the time when a signal is i
Chigasaki Hideo
Miyashita Hiroki
Okuda Yuichi
Antonelli Terry Stout & Kraus LLP
Nguyen Minh
LandOfFree
Clock generation circuit, control method of clock generation... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Clock generation circuit, control method of clock generation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Clock generation circuit, control method of clock generation... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3288195