X-ray or gamma ray systems or devices – Specific application – Computerized tomography
Reexamination Certificate
2002-08-01
2004-05-11
Bruce, David V. (Department: 2882)
X-ray or gamma ray systems or devices
Specific application
Computerized tomography
C378S004000, C378S193000
Reexamination Certificate
active
06735274
ABSTRACT:
FIELD OF THE INVENTION
This invention is concerned with medical diagnostic imaging systems, and more particularly with computerized tomographic (CT) systems, particularly such systems used for clinical screening of patients and potential patients.
BACKGROUND OF THE INVENTION
The present invention pertains to CT scanning systems utilizing X-ray radiation for generating images of the interior regions of human patients. It will be appreciated by those skilled in the art that the present invention will also find application in conjunction with industrial CT systems used for quality assurance and the like.
In general, CT systems comprise an X-ray source and X-ray detectors for detecting the X-rays after they have passed through a subject or object. The X-ray source and associated detectors, in what are known as third generation CT systems, rotate together around the subject. In what are known as fourth generation CT systems, the X-ray source rotates about the subject being examined while the detectors are stationary and surround the subject being imaged.
In the past, CT systems have been used for detailed studies of symptomatic and sickly patients. However, to a greater extent than ever, examinations referred to as screening examinations are made for asymptomatic and healthy patients on the theory that an ounce of prevention is worth a pound of cure. Thus, if malfunctioning of an organ in a patient can be detected in its very early stages, then a complete cure is much more likely. To provide the capability of detecting health problems in early stages, the images have to be sufficiently detailed to indicate health problems. Accordingly, screening examinations ideally should provide for acquiring 2-dimensional and 3-dimensional images using helical scans.
Presently, in general, systems that provide helical scanning, use X-ray sources that traverse the patient horizontally. That is, the patient is disposed horizontally on a patient support such as a bed, and the X-ray source rotates about the patient and the bed while the bed moves horizontally. The necessity of rotating around the patient plus the bed increases the size of the system. In addition, the source and associated paraphernalia are operating against gravity for a large portion of each rotation and thus the system requires more power and sturdier components, all of which increase the size and cost of the CT systems.
Presently, there are no CT systems available that are designed primarily for screening and nonetheless provide helical scanning. An ideal screening system should be relatively small and inexpensive, and therefore should ideally fit into medical centers and clinics where most of the screening examinations take place. To assure maximizing the discovery of latent health problems, the CT screening apparatus should be capable of conducting helical scans.
Of course, any CT system that is reduced in size and capable of conducting scanning, including helical scanning, whether or not it is sufficiently inexpensive for screening, would be useful.
The system described herein provides helical scans in a vertical direction. Scanning systems, wherein the scanning apparatus is positioned by vertical movement, have been known in the past. However such scanning systems did not teach or make obvious the use of vertical scanning, and certainly not for providing helical scans in a simple and elegant manner. Vertical positioning for CT scans are shown, for example, in PCT application US90/05821, published under publication no. WO91/07131, and the contents of that application are hereby incorporated herein by reference. This prior art device uses the vertical movement capabilities of the scanner to position the scanner to obtain a CT image of a desired location in the patient, not for continuous scanning during vertical movement. No movement takes place during the scanning.
An example of a prior art, inexpensive CT X-ray scanner, is to be found in U.S. Pat. No. 4,829,549. However, the scanner of that patent does not do a whole body scan. It is designed to image the limbs or parts of limbs of patients and is primarily used for detection of osteoporosis. The vertical motion of the scanning parts of the system of the patent are for positioning the scanning components, and no movement takes place during scanning.
Vertical scanning is shown in U.S. Pat. No. 5,305,363. However, that patent teaches the use of a unique X-ray source, in the form of a toroidial tube. The patent does teach helical scanning, when the scan is in the horizontal direction, but it fails to teach helical scanning when the scan is in the vertical direction. More particularly, since the object of the present invention is to provide an inexpensive CT system, the '363 patent teaches in an opposite direction; since it actually provides a more expensive CT system with its unique toroidial X-ray source, which accordingly would not be at all economic for screening.
SUMMARY OF THE INVENTION
An aspect of some preferred embodiments of the present invention is to provide a smaller, but extremely efficient CT system that can be used, among other things, for screening. To reduce the size and cost of the CT system, the patient support or bed normally associated with the CT scanner is eliminated, and vertical scanning is used.
According to an aspect of some preferred embodiments of the present invention, the CT scanning system includes a gantry or CT ring that contains an X-ray source and oppositely disposed detector apparatus. The subject either sits or stands in the center of the ring, and the ring moves vertically while rotating about the patient to provide the helical scans. According to an aspect of the invention, the helical scanning movements, both vertical and rotational, are done by the source and associated detectors.
In an aspect of some preferred embodiments of the invention, a small, inexpensive X-ray tube power supply is used. It is trickle-charged between patients and discharged during the scan. The high-voltage cable, on systems using such a power supply, does not have to be flexible, since the charged power supply is mounted directly upon rotating, vertically moving CT ring. Thus, the high-voltage cable that trickle-charges the high-voltage power supply is disconnected during the actual scan and only connected between scans.
In an aspect of some preferred embodiments of the invention, view data are recorded in a memory on the moving gantry during the scan, thereby eliminating the need for expensive data transmission apparatus. The memory, such as a hard disc, is replaced between patients or can be read out between patients, and reconstruction is carried-out on a separate console. The separate console can be used for a multiplicity of scanners, or the separate console can be used for the regular patients in the hospital during the day, and used for the screening of patients in the evening.
In another preferred embodiment, the system is installed in a mobile screening vehicle, and the image is reconstructed and evaluated at a central public health clinic, where a single sophisticated processing work station may be installed to serve a multiplicity of such mobile units.
Accordingly, preferred embodiments provide a CT system that is inexpensive, occupies a small space and is light in weight, but is capable of effective helical scanning. These advantages make it ideal for screening using multiple stations or for use as a mobile unit.
In accordance with a preferred aspect of the invention, a computerized tomographic imaging system is provided, which includes a gantry or CT ring defining a central bore surrounding the subject being imaged. At least one X-ray source is mounted on said gantry for emitting X-rays. X-ray detectors are also mounted on the gantry, oppositely disposed from said at least one X-ray source, to detect X-rays that have traversed said subject The gantry moves on vertically-extending, helically-arranged rails, causing the X-ray source to describe a helix to provide a helical scan of the subject, as the gantry travels over the vertically-extended, he
Levene Simha
Zahavi Opher
Bruce David V.
Koninklijke Philips Electronics , N.V.
Song Hoon
LandOfFree
Clinical screening CT systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Clinical screening CT systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Clinical screening CT systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3210007