Multiplex communications – Pathfinding or routing – Switching a message which includes an address header
Reexamination Certificate
1999-06-16
2004-07-20
Chin, Wellington (Department: 2664)
Multiplex communications
Pathfinding or routing
Switching a message which includes an address header
C370S229000
Reexamination Certificate
active
06765918
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to the field of telecommunications and, in particular, to a client/server based architecture for a telecommunications network.
BACKGROUND
The rise in the popularity of new forms of communication such as the Internet has driven the need for network systems that offer greater and greater amounts of bandwidth. Prior to the explosion of the Internet's popularity, most telecommunications systems were designed with an architecture to support primarily a single service (e.g., voice calls). Today, the newer telecommunication systems must be designed for the larger bandwidth demands of data traffic.
Current networks provide a communication stream of traffic between a user and a content provider, the two edges of a communication link. Essentially, all media traffic (e.g., Internet protocol (IP) traffic) with the signaling and service attributes flow in the same channel of the network; fitting into the “in-band” control paradigm. This communication link typically includes an access network that provides access for users to a core transport network. Typically, the core network and the access network do not have the intelligence to streamline control information and to act upon it. It is simply not cost effective for these networks to be continuously upgraded to support new control information models (e.g., models that are designed at layer
3
or higher in the protocol stack) as they are developed. Thus, today, the core and access networks are relatively inflexible networks that provide simple bandwidth pipes from end users to the content providers.
One example of a current architecture for higher bandwidth applications is the digital subscriber line (DSL), a technology that dramatically increases the digital capacity of ordinary telephone lines (the local loops) into the home or office. At the central office (CO), a device known as the digital subscriber line access multiplexer (DSLAM) for DSL service intermixes voice traffic and data traffic onto a customer's DSL line. It also separates incoming phone and data signals and directs them onto the appropriate carrier's network. A DSLAM is a transport device that typically deploys bandwidth services ranging from 1.5 to 6 Mbps downstream and 250 Mbps to 512 Mbps upstream.
One problem with a DSLAM is that the DSLAM performs a relatively non-intelligent transport function. In essence, the DSLAM takes in lower speed data lines and multiplexes the data lines into a higher speed link. The DSLAM does not manage or switch data because, by its very definition, the DSLAM performs a multiplexing function and does not understand the services that are being transported in the data stream. In addition, no time domain gains are achieved, as DSLAMs just multiplex data and do not perform call setup and switching on demand. The DSLAM design limits the ability of the system to deliver only a limited amount of bandwidth to the end customer. Through buffering techniques bandwidth can be oversubscribed, but due to the limitations of the DSLAM, the service provider cannot tear down and set up calls to deliver just the right amount of bandwidth in a certain time domain. To overcome this problem, additional equipment must be used in conjunction with a DSLAM that know about the services to assist in improving allocation of resources.
For example, a DSLAM can be used to provide Internet access by providing a point-to-point protocol (PPP) server on the network side of the DSLAM. Basically, the PPP server is an additional module that makes an association between a user and a connection for a particular Internet service provider (ISP) that the user wants to connect to, so that the user can get onto the Internet. Unfortunately, this PPP server only addresses the problem controlling a single service. Subscribers may desire additional services over their ADSL line. With a typical ADSL line, a subscriber receives one regular phone line and a data connection. Oftentimes, a user will want more phone lines or other services in addition to Internet access. To accomplish this, the service provider must add other equipment semi-in-parallel to supplement the DSLAM and/or change the end devices to provide, e.g., voice over ATM, because a DSLAM has no service level knowledge of the data that is passing through it. Essentially, additional equipment or modules must be added at the central office for every different service provided to a subscriber.
Another problem with a network architecture based on the DSLAM is the delivery of higher bandwidth services. Because the DSLAM is designed for primarily to perform a transport multiplexing function, a conventional DSLAM is not flexible in assigning additional network side trunk resources. Thus to address higher bandwidth services, e.g., for video on demand, the service provider may install yet another system in parallel with the DSLAM to provide access to this service.
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an improved architecture for a telecommunications network.
SUMMARY
The above-mentioned problems with telecommunications networks and other problems are addressed by the present invention and will be understood by reading and studying the following specification. A telecommunications network is described which employs a client/server architecture to allow intelligent allocation of bandwidth at a multimedia channel bank. The multimedia channel bank acting as a client is controlled by signals from a multimedia resource manager that acts as a server.
The client/server architecture provides a new way to streamline services and respond to new services layered on top of various transmission/transport access networks. By separating the transport entity (e.g., the multimedia channel bank or client) and the entity controlling Layer
3
+ intelligence (e.g., the multimedia resource manager or server) required to respond to service requests, the client/server architecture provides the following advantages:
1. The multimedia channel bank provides a transport oriented element (e.g., high capacity transport on layers
1
-
3
of the protocol stack) that is capable of implementing intelligent functionality provided by the server while being embodied in hardware that can be located in an outside plant environment.
2. The multimedia resource manager provides layer
3
and above intelligence to the multimedia channel banks and accommodates software stacks and APIs. This is the suitable platform to provide intelligence while keeping an open environment for new enhancements.
3. As a server, the multimedia resource manager provides a mechanism for the multimedia channel banks to communicate with layer
3
and higher servers (e.g., content providers, Internet service providers (ISPs)).
4. The multimedia resource manager, as a server, can use commercial database information models to tailor specific service/user profiles.
As a further advantage, the client/server architecture allows the access network to respond to “out of band” control information and user requests on a dedicated, specialized server platform. This server (e.g., the multimedia resource manager) allows the network to handle multiplicity of protocols, APIs stacks and has the visibility to massive databases of service attributes, end-user profiles and accounts. The client/server architecture further provides the intelligence required to offer differentiated services on top of the ATM/IP transport network.
REFERENCES:
patent: 5475696 (1995-12-01), Taniguchi
patent: 5781320 (1998-07-01), Byers
patent: 5805595 (1998-09-01), Sharper et al.
patent: 5835491 (1998-11-01), Davis et al.
patent: 5838683 (1998-11-01), Corley et al.
patent: 5920258 (1999-07-01), Kusyk et al.
patent: 5991292 (1999-11-01), Focsaneanu et al.
patent: 6035028 (2000-03-01), Ward et al.
patent: 6044403 (2000-03-01), Gerszberg et al.
patent: 6115355 (2000-09-01), Rao
patent:
Dixon Timothy J.
Zimmerman Michael
Blakely , Sokoloff, Taylor & Zafman LLP
Chin Wellington
Pham Brenda
Teledata Networks Ltd.
LandOfFree
Client/server based architecture for a telecommunications... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Client/server based architecture for a telecommunications..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Client/server based architecture for a telecommunications... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3220434