Cleated footwear

Boots – shoes – and leggings – Boots and shoes – Occupational or athletic shoe

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C036S06700D, C036S06700D

Reexamination Certificate

active

06499235

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an article of cleated footwear. In particular, the present invention relates to a baseball shoe including a sole having structural plates and various types of cleats mounted thereon.
BACKGROUND INFORMATION
There are four basic movements in baseball: pitching/throwing, base running, hitting, and fielding. In all four movements, a player's foot follows one basic motion pattern. Weight is placed on the player's back foot, or more precisely, the forefoot portion of the back foot. The player then rolls his weight to the medial side. From the medial side, weight is shifted onto the toe portion, where the toe-off begins, starting at the first metatarsal and finishing at the big toe. The primary traction area is the forefoot. Therefore, it is essential to maximize traction in the forefoot while allowing a player to swivel and/or pivot on their forefoot with minimum resistance.
Conventional baseball shoes are constructed of bladed steel spikes formed on a single sole plate running from toe to heel. Steel spikes are known to penetrate the ground well, providing good grip and push-off; however, baseball shoes with steel spikes are also known to be uncomfortable to a wearer. Steel spikes are uncomfortable for two reasons: (1) the wearer can typically feel the spikes through the shoes; and (2) the placement of the spikes may induce unnecessary stresses in the wearer's feet or ankles, as a result of the motion of the wearer's feet. Non-optimal spike placement and unnecessary weight can also degrade the athletic performance of the wearer. The discomfort is especially apparent when the shoes are used on hard, heavy, or dry ground conditions. Hard ground can also quickly wear down a steel spike and diminish its performance.
Other types of cleats, for example molded nylon cleats, are typically more comfortable than steel spikes; however, molded cleats trade performance for comfort. Molded cleats are typically more comfortable than steel spikes, because they provide superior pressure distribution; however, molded nylon cleats are not generally used for baseball shoes due to their inferior ground penetration characteristics, particularly on hard ground. Therefore, molded nylon cleats provide inferior traction and/or toe-off as compared to steel spikes.
An object of the invention is, therefore, to maximize the comfort and performance of a cleated shoe by selecting appropriate cleat material, design, and placement and also by selecting appropriate plate design, placement, and materials. Although only conventional baseball shoes are described in the preceding description of the prior art, the invention is applicable to all types of shoes whose performance could benefit from the incorporation of cleats.
SUMMARY OF THE INVENTION
Generally, the invention addresses the problems outlined above by means of a combination of cleat materials, designs, and placement, and the use of multiple plates with varied designs and/or materials. The inventors have discovered that the unique plate and cleat combinations of the present invention can optimize an athlete's performance. The shoe sole of the present invention provides an improved combination of traction and comfort, which enables the wearer to exercise more power and drive. In particular, a sole in accordance with the present invention increases stability, agility, balance, and acceleration, while reducing slip. The use of a heel plate, where a majority of an athlete's weight is supported, with molded cleats made from a polymer material provides increased comfort to an athlete. The forefoot plate with alloy cleats affords an athlete fine performance, because the alloy cleats penetrate the ground readily providing better grip and push-off than the molded cleats. The cleat of the forefoot plate is preferably made from a non-ferrous metal alloy, such as an aluminum-based alloy. Alternatively, the forefoot plate could incorporate cleats made of an alloy based on ceramics, titanium, and/or magnesium. Alloy cleats may offer more comfort than steel cleats in conjunction with acceptable ground penetration properties. The two plates and distinctive cleat materials and designs result in a shoe with the comfort of molded cleats and the performance of bladed steel spikes.
In one aspect, the invention relates to an article of footwear including a sole having a forefoot plate, a heel plate, at least one alloy cleat, and at least one molded cleat. The alloy cleat or cleats protrude from the forefoot plate. The molded cleat or cleats protrude from the heel plate.
In another aspect, the invention relates to an article of footwear with a sole that includes a forefoot plate, a heel plate, a stability element, at least one alloy cleat, and at least one molded cleat. The stability element couples the forefoot plate and the heel plate. The alloy cleat or cleats protrude from the forefoot plate. The molded cleat or cleats protrude from the heel plate.
The stability element of one embodiment of the invention includes a generally longitudinal lateral element, a generally longitudinal medial element, and a transverse element. The transverse element connects the lateral and medial elements and may include a plurality of fingers or finger-like elements. In one embodiment, the transverse element may include three finger elements forming a generally E-shaped element.
The stability element may extend from the forefoot plate to the heel plate and is preferably constructed of a material and configured for controlling, in a preselected manner, the rotation of the forefoot of the shoe with respect to the heel of the shoe. The stability element may support the foot over its effective longitudinal length without affecting the flexibility of the footwear with respect to the twisting of the forefoot relative to the heel. In addition, the stability element may support the front part of the foot in the forefoot area. The above mentioned material properties can be obtained by manufacturing the stability element from a composite material of resin and carbon fibers, or a thermoplastic material, or equivalent materials. The stability element may be of the type described in U.S. patent application Ser. No. 09/286,737, assigned to the same assignee as the instant application, the disclosure of which is hereby incorporated by reference in its entirety.
Various embodiments according to the foregoing aspects of the invention may include the following features. The alloy cleat may be made of a non-ferrous metal alloy, preferably an aluminum-based alloy. Alternatively, the alloy cleat may be made of a ceramic, titanium, and/or magnesium alloy. There may be four alloy cleats. There may be three or four molded cleats. The alloy or molded cleats or both may be arranged in a generally circular configuration. The generally circular configuration of the alloy cleats may be centered generally about an area of a third metatarsal. The alloy cleat or cleats may have a generally arcuate cross-section. The heel plate may have a generally circular shape. The forefoot plate may extend into the midfoot region. The forefoot plate extension into the midfoot region may be limited to the lateral side.
In still another aspect, the invention relates to an alloy cleat that includes a mounting base, a body, and a stiffening rib. The body extends from the mounting base to a distal end that may be ground-engaging. The body has a generally arcuate cross-section. The stiffening rib is formed integrally with the body and may be centrally located along the body. In one embodiment, the alloy cleats are made of a non-ferrous metal alloy, such as an aluminum-based alloy. Alternatively, the alloy cleat may be made of a ceramic, titanium, and/or magnesium based alloy. Various other embodiments of the cleat include multiple stiffening ribs formed integrally with the body, the stiffening ribs disposed at generally equal distances about the body. In addition, the body may have other cross-sectional shapes such as, linear, rectangular, or circular. Furthermore, an allo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cleated footwear does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cleated footwear, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cleated footwear will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2987342

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.