Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Specific organic component
Reexamination Certificate
1999-04-09
2001-10-30
Gupta, Yogendra N. (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
Specific organic component
C510S285000, C008S142000
Reexamination Certificate
active
06310029
ABSTRACT:
TECHNICAL FIELD
The present invention is directed to a composition, more specifically, to a siloxane fluid based composition, for use in dry cleaning and to a dry cleaning process using the composition.
BACKGROUND
Current dry cleaning technology uses perchloroethylene (“PERC”) or petroleum-based materials as the cleaning solvent. PERC suffers from toxicity and odor issues. The petroleum-based products are not as effective as PERC in cleaning garments.
Linear volatile siloxanes and cyclic siloxanes have been reported as spot cleaning solutions, see U.S. Pat. No. 4,685,930. Other patents disclose the use of silicone soaps in petroleum solvents, see JP 09299687, and the use of silicone surfactants in super critical carbon dioxide solutions has been reported, see, for example, U.S. Pat. No. 5,676,705 and Chem. Mark. Rep., Dec. 15 1997, 252(24), p. 15. Non-volatile silicone oils have also been used as the cleaning solvent requiring removal by a second washing with perfluoroalkane to remove the silicone oil, see JP 06327888.
Numerous other patents have issued in which siloxanes or organomodified silicones have been present as addenda in PERC or petroleum based dry cleaning solvents, see, for example, WO 9401510; U.S. Pat. Nos. 4,911,853; 4,005,231; 4,065,258.
SUMMARY OF THE INVENTION
In a first aspect, the present invention is directed to a method for cleaning an article, comprising contacting the article with a composition comprising a linear or branched volatile siloxane.
In a second aspect, the present invention is directed to a cleaning composition, which, in a first preferred embodiment, comprises a linear or branched volatile siloxane and a surfactant.
In a second preferred embodiment, the cleaning composition comprises a branched or linear volatile siloxane and a cyclic siloxane.
The process of the present invention is effective in removing both non-polar stains, such as for example, oil and sebum, and polar stains, such as, for example, salts, components of coffee, tea and grape juice, from the article, for example, a garment, being cleaned and in suppressing redeposition of soil on the article.
DETAILED DESCRIPTION OF THE INVENTION
Preferably, the first preferred embodiment of the cleaning composition of the present invention comprises, based on 100 parts by weight (“pbw”) of the composition, from 80 pbw to 99.99 pbw, more preferably from 90 pbw to 99.9 pbw and even more preferably from 92 pbw to 99.5 pbw of the linear or branched volatile siloxane and from 0.01 pbw to 20 pbw, more preferably from 0.1 pbw to less than 10 pbw and even more preferably from 0.5 pbw to 8 pbw of the surfactant. In a preferred embodiment, the cleaning composition further comprises, based on 100 pbw of the composition, up to 10 pbw, more preferably from 0.01 pbw to 10 pbw, even more preferably from 0.1 pbw to 5 pbw, even more preferably 0.5 pbw to 2 pbw water.
Preferably, the second preferred embodiment of the cleaning composition of the present invention comprises, based on 100 pbw of the composition, from 0.1 pbw to 99.9 pbw, more preferably from 50.1 pbw to 99 pbw and even more preferably from 80 pbw to 99 pbw of the linear or branched volatile siloxane and from 0.1 pbw to 99.9 pbw, more preferably from pbw 1 to 49.99 pbw and even more preferably from 1 pbw to 20 pbw of the cyclic siloxane. In a preferred embodiment, the cleaning composition further comprises, based on 100 pbw of the composition, up to 10 pbw, more preferably from 0.01 pbw to 10 pbw, even more preferably from 0.1 pbw to 5 pbw, even more preferably 0.5 pbw to 2 pbw water.
Compounds suitable as the linear or branched, volatile siloxane component of the present invention are those containing a polysiloxane structure that includes from 2 to 20 silicon atoms. Preferably, the linear or branched, volatile siloxanes are relatively volatile materials, having, for example, a boiling of below about 300° C. point at a pressure of 760 millimeters of mercury (“mm Hg”).
In a preferred embodiment, the linear or branched, volatile siloxane comprises one or more compounds of the structural formula (I):
M
2+y+2z
D
x
T
y
Q
z
(I)
wherein:
M is R
1
3
SiO
1/2
;
D is R
2
2
SiO
2/2
;
T is R
3
SiO
3/2
;
and Q is SiO
4/2
R
1
, R
2
and R
3
are each independently a monovalent hydrocarbon radical; and
x and y are each integers, wherein 0≦x≦10 and 0≦y≦10 and 0≦z≦10
Suitable monovalent hydrocarbon groups include acyclic hydrocarbon radicals, monovalent alicyclic hydrocarbon radicals, monovalent and aromatic hydrocarbon radicals. Preferred monovalent hydrocarbon radicals are monovalent alkyl radicals, monovalent aryl radicals and monovalent aralkyl radicals.
As used herein, the term “(C
1
-C
6
)alkyl” means a linear or branched alkyl group containing from 1 to 6 carbons per group, such as, for example, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, preferably methyl.
As used herein, the term “aryl” means a monovalent unsaturated hydrocarbon ring system containing one or more aromatic rings per group, which may optionally be substituted on the one or more aromatic rings, preferably with one or more (C
1
-C
6
)alkyl groups and which, in the case of two or more rings, may be fused rings, including, for example, phenyl, 2,4,6-trimethylphenyl, 2-isopropylmethylphenyl, 1-pentalenyl, naphthyl, anthryl, preferably phenyl.
As used herein, the term “aralkyl” means an aryl derivative of an alkyl group, preferably a (C
2
-C
6
)alkyl group, wherein the alkyl portion of the aryl derivative may, optionally, be interrupted by an oxygen atom, such as, for example, phenylethyl, phenylpropyl, 2-(1-naphthyl)ethyl, preferably phenylpropyl, phenyoxypropyl, biphenyloxypropyl.
In a preferred embodiment, the monovalent hydrocarbon radical is a monovalent (C
1
-C
6
)alkyl radical, most preferably, methyl.
In a preferred embodiment, the linear or branched, volatile siloxane comprises one or more of, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, dodecamethylpentasiloxane, tetradecamethylhexasiloxane or hexadecamethylheptasiloxane or methyltris(trimethylsiloxy)silane. In a more highly preferred embodiment, the linear or branched, volatile siloxane of the present invention comprises octamethyltrisiloxane, decamethyltetrasiloxane, or dodecamethylpentasiloxane or methyltris(trimethylsiloxy)silane. In a highly preferred embodiment, the siloxane component of the composition of the present invention consists essentially of decamethyltetrasiloxane.
Suitable linear or branched volatile siloxanes are made by known methods, such as, for example, hydrolysis and condensation of one or more of tetrachlorosilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, or by isolation of the desired fraction of an equilibrate mixture of hexamethyldisiloxane and octamethylcyclotetrasiloxane or the like and are commercially available.
Compounds suitable as the cyclic siloxane component of the present invention are those containing a polysiloxane ring structure that includes from 2 to 20 silicon atoms in the ring. Preferably, the linear, volatile siloxanes and cyclic siloxanes are relatively volatile materials, having, for example, a boiling point of below about 300° C. at a pressure of 760 millimeters of mercury (“mm Hg”).
In a preferred embodiment, the cyclic siloxane component comprises one or more compounds of the structural formula (II):
wherein:
R
5
, R
6
, R
7
and R
8
are each independently a monovalent hydrocarbon group; and
a and b are each integers wherein 0≦a≦10 and 0≦b≦10, provided that 3≦(a+b)≦10.
In a preferred embodiment, the cyclic siloxane comprises one or more of, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, tetradecamethylcycloheptasiloxane. In a more highly preferred embodiment, the cyclic siloxane of the present invention comprises octamethylcyclotetrasiloxane or decamethylcyclopentasiloxane. In a highly preferred embodiment, the cyclic siloxane component of the composition of the present
Kilgour John A.
Perry Robert J.
General Electric Company
Gupta Yogendra N.
Petruncio John M
LandOfFree
Cleaning processes and compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cleaning processes and compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cleaning processes and compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2596831