Cleaning metal salts of intermediate length carboxylic acids...

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S245000, C510S504000

Reexamination Certificate

active

06727214

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to management of a cleaning process that removes metal salts of intermediate length carboxylic acids, i.e., fatty acids with from 10 to 22 carbon atoms per molecule, from surfaces where such salts are present over an underlying water insoluble substrate, particularly a metal substrate. (The remainder of this description will concentrate on metal substrates, but it is to be understood that the description applies, mutatis mutandis, to other types of substrates that are not substantially damaged by contact with, or dissolved in, water.) Between the exposed surface of metal intermediate length carboxylate salt(s) and the substrate surface, there may or may not be other layers such as phosphate conversion coatings, anodized coatings, or complex oxide layers such as those that can be formed with a commercially available product named BONDERITE® 770X from the Henkel Surface Technologies Div. of Henkel Corp., Madison Heights, Mich.
Metal salts, particularly water-insoluble ones, of intermediate length carboxylic acids are widely used as lubricants for cold drawing of steel and other metals, usually over a phosphate or other conversion coating that is believed to act as a “carrier” for the lubricative metal intermediate length carboxylate salt(s). After cold drawing has been completed, in most instances the metal intermediate length carboxylate salt(s) and any underlying conversion coating need to be removed before further processing of the metal article that has been cold drawn.
Such removal/cleaning has been conventionally accomplished with strongly alkaline cleaners, which preferably also contain sequestering agents for the metal cations in any underlying conversion coating, when such a coating is present, and surfactants to aid in wetting of the surface and dispersing and removing soils. However, when substantial amounts of metal intermediate length carboxylate salt(s) have been dissolved, dispersed, or both dissolved and dispersed in such a cleaner, it becomes inadequately effective for further cleaning (and strongly prone to foaming) unless the dissolved, dispersed, or both dissolved and dispersed metal salts of intermediate length carboxylic acids are removed from the used cleaner. Inasmuch as no commercially well established satisfactory method of removing these dissolved, dispersed, or both dissolved and dispersed salts of intermediate length carboxylic acids has appeared in prior art, it is current commercial practice to discard cleaning solutions and replace them with freshly prepared solutions when accumulation of dissolved, dispersed, or both dissolved and dispersed salts of intermediate length carboxylic acids depresses the cleaning ability of the solutions to an unsatisfactory level.
A major object of this invention is to provide a new method for separating dissolved, dispersed, or both dissolved and dispersed salts of intermediate length carboxylic acids from alkaline cleaning solutions containing these salts that will achieve at least one of the following advantages:
allowing satisfactory extended use of the unconsumed ingredients of the cleaning solutions;
avoiding impractical degrees of foaming of used cleaning solutions; and
achieving greater overall economy in the cleaning process than the present commercially established alkaline cleaning processes and their associated cleaning solutions.
Other alternative, concurrent, and/or more detailed objects will be apparent from the description below.
Except in the claims and the operating examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention. Practice within the numerical limits stated is generally preferred, however. Also, throughout the description, unless expressly stated to the contrary: percent, “parts of”, and ratio values are by weight or mass; the term “polymer” includes “oligomer”, “copolymer”, “terpolymer” and the like; the description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description or of generation in situ within the composition by chemical reaction(s) noted in the specification between one or more newly added constituents and one or more constituents already present in the composition when the other constituents are added, and does not necessarily preclude unspecified chemical interactions among the constituents of a mixture once mixed; specification of constituents in ionic form additionally implies the presence of sufficient counterions to produce electrical neutrality for the composition as a whole and-for any substance added to the composition; any counterions thus implicitly specified preferably are selected from among other constituents explicitly specified in ionic form, to the extent possible; otherwise such counterions may be freely selected, except for avoiding counterions that act adversely to an object of the invention; the word “mole” means “gram mole”, and the word itself and all of its grammatical variations may by used for any chemical species defined by all of the types and numbers of atoms present in it, irrespective of whether the species is ionic, neutral, unstable, hypothetical, or in fact a stable neutral substance with well defined molecules; and the terms “solution”, “soluble”, “homogeneous”, and the like are to be understood as including not only true equilibrium solutions or homogeneity but also dispersions that show no visually detectable tendency toward phase separation over a period of observation of at least 100, or preferably at least 1000, hours during which the material is mechanically undisturbed and the temperature of the material is maintained within the range of 18-25° C.
BRIEF SUMMARY OF THE INVENTION
It has been found possible to cause at least the anions of the salts of intermediate length carboxylic acids that are removed by a cleaning solution from a substrate being cleaned to segregate themselves from the bulk of the cleaning solution into a solid phase that floats on the cleaning solution at its temperature of use. The floating solid phase can readily be removed by skimming or some other known technique for separating solid and liquid phases, while the remaining liquid phase can continue to be used for effective cleaning for as long an interval as has been tested, so long as consumed ingredients are replenished in it. The replenishment thus required consumes cleaning materials at a rate that is substantially lower than the overall consumption of fresh cleaning materials by the established processes of discarding cleaning solutions after a relatively small amount of dissolved, dispersed, or both dissolved and dispersed salts of intermediate length carboxylic acids has accumulated in the cleaning solutions. Embodiments of the invention include processes for cleaning and aqueous liquid cleaning compositions particularly useful for this type of cleaning process.
DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS
One composition embodiment of the invention is a homogeneous aqueous liquid cleaning composition that comprises, preferably consists essentially of, or more preferably consists of, water and the following components:
(A) a component of dissolved strongly dissociated cations and anions each with a molecular weight not more than 100 Daltons; and
(B) a component of dissolved, dispersed, or both dissolved and dispersed cations with an average molecular weight of at least 200 Daltons; and, optionally, one or more of the following components:
(C) a component of dissolved sequestering agent molecules that are not part of either of immediately previously recited components (A) and (B)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cleaning metal salts of intermediate length carboxylic acids... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cleaning metal salts of intermediate length carboxylic acids..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cleaning metal salts of intermediate length carboxylic acids... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3261783

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.