Cleaning composition for hard surfaces

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Liquid composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S229000, C510S238000, C510S240000, C510S241000, C510S243000, C510S244000, C510S476000, C510S504000

Reexamination Certificate

active

06703358

ABSTRACT:

The present invention relates to a cleaning composition for treating public, domestic or industrial hard surfaces, in particular of ceramic, tile or glass type, which is aimed at giving these surfaces hydrophilic properties.
The invention relates more particularly to a cleaning composition for treating such a surface which is capable of giving this surface long-lasting hydrophilic properties so as to avoid the subsequent presence of marks due in particular to the drying of drops of water deposited on the said surface.
Commercial detergent formulations clean public, domestic or industrial hard surfaces efficiently. They generally consist of an aqueous solution of surfactants, in particular of nonionic and anionic surfactants, of alcohol(s) to facilitate drying, and optionally of sequestering agents and bases to adjust the pH. A major defect of these detergent formulations is that the subsequent contact of the hard surface with water can lead to the presence of marks on drying. This contact with water after applying detergent can originate, for example, from rainwater in the case of windows, mains water on a bathroom tile, or rinsing water when the cleaning requires a rinsing. They can also originate from the air-drying of washing-up crockery in the case of detergent formulations for washing up by hand, or from the drying of washing-up crockery in an automatic machine when it is a case of dishwasher detergent. In the case of doing the washing-up in an automatic machine, the said formulation can either be used in the cleaning cycle (detergent formulation) or during the rinsing cycle (rinsing liquid).
The presence of marks or stains left on hard surfaces by water which comes into contact with them is due to the phenomenon of contraction of the drops of water on contact with the hard surface, which, during the subsequent drying, leave marks on the surface which reproduce the original shapes and dimensions of the drops.
No satisfactory solution to this problem exists at the present time.
To solve the problem posed by the retraction and drying of drops of water, the solution consists in increasing the hydrophilicity of the surface in order to obtain the smallest possible contact angle between the hard surface to be treated and the drop of water.
The inventors' studies which led to the present invention have determined that this problem can be solved in an effective and long-lasting manner by incorporating in the conventional cleaning compositions for hard surfaces, a water-soluble or water-dispersible organic polymer compound which has both a function of interaction with the surface to be treated and a function giving this surface a hydrophilic nature and having certain specific properties.
A first subject of the invention consists of a cleaning composition for hard surfaces comprising at least one surfactant and at least one water-soluble or water-dispersible copolymer comprising, in the form of polymerized units:
(a) at least one monomeric compound of general formula I:
 in which
R
1
is a hydrogen atom or a methyl group, preferably a methyl group;
R
2
, R
3
and R
4
are linear or branched C
1
-C
4
alkyl groups;
n represents an integer from 1 to 4, in particular the number 3;
X represents a counterion which is compatible with the water-soluble or water-dispersible nature of the polymer;
(b) at least one hydrophilic monomer chosen from C
3
-C
8
carboxylic acids containing monoethylenic unsaturation, anhydrides thereof and water-soluble salts thereof;
(c) optionally at least one hydrophilic monomeric compound containing ethylenic unsaturation, of neutral charge, bearing one or more hydrophilic groups, which is copolymerizable with (a) and (b);
the average charge Q on the copolymer defined by the equation:
Q
=
[
a
]
-
[
b
]



Γ
[
a
]
in which [a] represents the molar concentration of monomer (a);
in which [b] represents the molar concentration of monomer (b); and
and r represents the rate of neutralization of monomers (b) defined by:
Γ
=
[
COO
-
]
[
COOH
]
+
[
COO
-
]
in which [COOH] and [COO

] represent, respectively, the molar concentrations of monomers (b) in carboxylic acid and carboxylate form at the pH at which the cleaning composition is used, being greater than 0 and possibly going down
to 0.4, advantageously down to 0.2. The molar ratio (a)/(b) is advantageously between 25/75 and 70/30.
The molar ratio c/(a+b+c) is advantageously between 0 and 40/100, preferably between 10/100 and 30/100.
The copolymer according to the invention is preferably a random copolymer.
The average charge Q on the said copolymer at the pH of the cleaning composition may be determined by any known means, in particular by assay using a polyvinyl sulphate solution or by zetametry.
The monomer (a) gives the copolymer properties of interaction with the surface to be treated, in particular allowing anchoring of the copolymer to this surface.
The monomer (b) and optionally the monomer (c) give the copolymer hydrophilic properties which, after anchoring the copolymer to the surface to be treated, are transmitted to this surface.
The expression “long-lasting stain-resistant or mark-resistant properties” means that the treated surface contains these properties over time, which includes after subsequent contact with water, whether this is rainwater, mains water or rinsing water containing or not containing rinsing products.
This hydrophilic property of the surface moreover reduces the formation of mist on the surface; this benefit can be exploited in cleaning formulations for glass panels and mirrors, in particular in bathrooms.
Furthermore, when a surface is treated using a copolymer according to the invention, the rate at which this surface dries, immediately after the polymer has been applied but also after subsequent and repeated contact with an aqueous medium, is very significantly improved.
The copolymer according to the invention advantageously has a weight-average molecular mass of at least 1000, advantageously of at least 10,000; it can be up to 20,000,000, advantageously up to 10,000,000.
Except where otherwise mentioned, when the expression “molecular mass” is used, this will be the weight-average molecular mass, expressed in g/mol. This may be determined by aqueous gel permeation chromatography (GPC) or measurement of the intrinsic viscosity in 1N NaNO
3
solution at 30° C.
The preferred monomer (a) is MAPTAC of the following formula:
Among the preferred monomers (b) which may be mentioned are acrylic acid, methacrylic acid, &agr;-ethacrylic acid, &bgr;,&bgr;-dimethylacrylic acid, methylene-malonic acid, vinylacetic acid, allylacetic acid, ethylidineacetic acid, propylidineacetic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, N-methacroylalanine, N-acryloylhydroxyglycine, and anhydrides and alkali metal salts and ammonium salts thereof.
Among the monomers (c) which may be mentioned are acrylamide, vinyl alcohol, C
1
-C
4
alkyl esters of acrylic acid and of methacrylic acid, Cl-C
4
hydroxyalkyl esters of acrylic acid and of methacrylic acid, in particular ethylene glycol and propylene glycol acrylate and methacrylate, polyalkoxylated esters of acrylic acid and of methacrylic acid, in particular the polyethylene glycol and polypropylene glycol esters.
X is any suitable counteranion which is compatible with the water-soluble or water-dispersible nature of the copolymer, in particular a halide, sulphate, hydrogen sulphate, phosphate, citrate, formate or acetate anion.
The copolymers of the invention can be obtained according to the known techniques for the radical-mediated polymerization of ethylenically unsaturated monomers.
The cleaning compositions according to the invention advantageously have a water-soluble or water-dispersible copolymer/surfactant weight ratio of between 1/2 and 1/100, preferably between 1/5 and 1/50.
One copolymer which is particularly preferred is as follows:
in which the sum of x+y+z is equal to 100%, x, y and z re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cleaning composition for hard surfaces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cleaning composition for hard surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cleaning composition for hard surfaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3256240

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.