Cleaning brush for medical devices

Brushing – scrubbing – and general cleaning – Implements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C015S104160, C604S267000

Reexamination Certificate

active

06725492

ABSTRACT:

BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to apparatuses used to clean medical devices. In particular, the present invention relates to a brush for safely and effectively cleaning the interior passageway of medical devices such as hemodialysis tubes, catheters, feeding tubes, and venous lines, without necessitating removal of the medical device from the patient.
2. The Relevant Technology
Various types of tubular medical devices have been employed in the medical field to perform a broad range of important functions. For example, catheters are commonly employed to carry various bodily fluids, including but not limited to, abscess fluids, urinary fluids, or biliary fluids. Other such medical devices include feeding tubes, used to provide nutrition to a patient, hemodialysis tubes, and venous lines.
Many of these medical devices are used in long-term treatments. It is important that the interior passageway in these medical devices remain unobstructed. Accordingly, various cleaning devices have been developed which are intended to remove matter such as particles, residues, and the like, which may collect in the interior passageway, or other portions, of the medical device. Some types of medical devices include a retention string which resides inside the device and is used to control the device during placement. One problem associated with such retention string arrangements is that residue or particles may build up on the retention string itself. Such buildup may lead to uneven, reduced, or obstructed flow in the tubular medical device. Obstructed or limited flow may extend the recovery time of a patient, resulting in the potential for further complications or infections. For example, an infection may cause complications in the patient's treatment leading to sickness or even death. These problems are exacerbated in those cases where the medical device must be kept in place for a relatively long period of time.
Presently, many of these types of medical devices are periodically exchanged for a new instrument. Typically, the life of the medical device is limited by buildup in the interior passageway. As a result, after a certain amount of time, the medical device is removed and discarded and a new device is then inserted. Inserting a new medical device however, often implicates additional risks of inducing infection. In addition, the replacement of the medical device increases the overall cost to the patient. Thus, each replacement of the medical device implicates a variety of undesirable effects, including increased pain to the patient, increased expenses, and increased potential for inducing an infection which could jeopardize the health of the patient.
As suggested earlier, various specialized instruments have been developed for use in conjunction with tubular type medical devices. However, as discussed below, none of these devices are designed to permit cleaning of the tubular medical device while the medical device is attached to and fluidly connected to the patient.
One example of such a device is a cytology brush such as is used to collect cells for analysis. The cytology brush is basically an elongated brush which includes soft bristles. The brush is passed through an endoscope or coaxial catheter and pushed so that the bristles brush over the end wall of the duct to displace cells from the duct wall. Some of the cells are captured in the bristles. By design, cytology brushes are intended to collect cells and are not structurally equipped to apply the scrubbing forces necessary for removal of particles, residue, or the like from the interior passageway of a medical device.
A brush apparatus is also available that is used to detect whether a catheter is a cause of an infection in a patient, without necessitating removal of the catheter from the patient to perform the detection process. Typically, the apparatus includes a wire handle, brush, and a protective, microbially impervious bag disposed over the handle and brush. The device is used by advancing the brush in the catheter and simultaneously removing it from the protective bag. After the sample has been obtained, the brush is retracted. Once the brush is fully retracted, the wire to which the brush is attached is clipped and the brush is placed into the bag, or a vial.
Yet another type of brush that is available is a motorized brush that is inserted through a catheter, over a guidewire, into a blood vessel. In use, the brush extends beyond the catheter and is used to break up blood clots in the blood vessel.
Finally, a brush-tipped catheter is available which includes a biopsy brush that comprises a plurality of bristles that extend from the distal end of a catheter sheath itself. Such biopsy brushes are typically employed in the context of peripheral transbronchial biopsies to obtain samples.
In view of the foregoing problems and shortcomings, it would be an advancement in the art to provide a brush that facilitates, among other things, safe and effective in situ cleaning of tubular medical devices such as hemodialysis tubes, catheters, feeding tubes, drainage tubes, venous lines, and the like.
BRIEF SUMMARY OF THE INVENTION
The present invention has been developed in response to the current state of the art, and in particular, in response to these, and other, problems and needs that have not been fully or adequately resolved by currently available brushes. Briefly summarized, embodiments of the present invention provide an improved brush which facilitates, among other things, safe and effective cleaning of passageways defined by various medical devices without necessitating removal of the medical device from the patient or otherwise interrupting fluid communication between the patient and the medical device.
Embodiments of the present invention are well suited for use in the context of the cleaning of medical devices such as hemodialysis tubes, catheters, feeding tubes, drainage tubes, venous lines, and the like. However, it will be appreciated that embodiments of the present invention are suitable for use in any application or environment where it is desired to implement safe and effective in situ cleaning of a medical device defining one or more passageways in communication with, or otherwise connected to, a patient.
In one embodiment of the present invention, a brush is provided that includes an atraumatic tip comprising a core wire, preferably composed of a memory alloy such as NiTiNOL (Nickel Titanium Naval Ordnance Laboratory), and ground so that the core wire tapers from a relatively larger outside diameter at its proximal end to a relatively smaller outside diameter at its distal end. The proximal end of the core wire is preferably substantially flattened so as to overlap with a braided fill wire, discussed below. Disposed about the core wire is a coil, preferably comprising gold-plated tungsten. A suitable epoxy bonds the coil to the hollow core wire and to a distal connector sleeve, discussed below, within which the proximal end of the core wire is received. Finally, a bulb, preferably comprising medical grade epoxy, is disposed about the coil at the distal end of the core wire.
As suggested above, the atraumatic tip is joined to a fill wire, preferably comprising a plurality of braided wires, which includes a fill section comprising a plurality of bristles, or fill, preferably comprising nylon or the like. The braiding facilitates, among other things, a high degree of flexibility in the fill wire. The flattened end of the core wire is made to overlap with the distal end of the fill wire, which preferably comprises stainless steel, and the two are retained in place by way of the distal connector sleeve, preferably comprising stainless steel. Preferably, the distal connector sleeve is resistance welded to the proximal end of the core wire and to the distal end of the fill wire. The brush bristles, or fill, are incorporated during the braiding of the wire and the outside diameter of the fill section preferably increases from the distal end of the fill wire to the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cleaning brush for medical devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cleaning brush for medical devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cleaning brush for medical devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3264407

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.