Class-D amplifier with digital feedback

Amplifiers – Modulator-demodulator-type amplifier

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C330S20700P

Reexamination Certificate

active

06759899

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a Class-D Power Amplifier, and more particularly, to a Class-D Power Amplifier having a pulse coded digital input signal and typically using an H-Bridge to drive an output load, like a loudspeaker.
2. Description of the Prior Art
Class-AB amplifiers are notoriously inefficient; therefore in applications where thermal performance or battery life is important, a different amplifier topology is needed. Class-D amplifiers overcome the shortfalls of Class-AB amplifiers by being highly efficient. Class D refers to a design where the (unfiltered) output of an amplifier circuit always switches between the two extreme power supply voltage levels. With Class D amplifiers, the output is made to switch between the two output levels at a very high frequency—substantially higher than the highest audible frequency, which is done by feeding high-frequency pulses to the power amplification stage. The pulse-width ratio of the driving signal can be varied in order to make the averaged (filtered) output signal follow the (amplified) input signal very closely; such amplifier is referred to as pulse width modulated (PWM). The amplifier can also be pulse density modulated (PDM), were the density of pulses is varied in order to make the averaged (filtered) output signal follow the input signal. The output switching is controlled just by the pulse timing; and the output voltage at the load represents the input signal correct as long as the supply voltage is perfectly constant. However the amplitude of the switched voltage is in real life not fixed. Power supplies have a finite output impedance and tend to have ripple on them. Class D power stages per se have no power supply ripple rejection. Switch-induced ringing on the power supply and power stage similarly cause amplitude errors.
FIG. 1
shows a schematic block diagram of a state-of-the-art PDM Class-D Amplifier. It typically comprises a Sigma Delta Modulator, or a similar converter, to generate the driving signal for the power output stage, which is typically an H-Bridge and a loudspeaker.
Several patents describe the use of some form of digital feedback signal to compensate for errors in the output signal, however, none of them uses a method to measure the pulse area of the output signal and then calculating the required digital correction value in order to compensate for the error.
U.S. Pat. No. 5,949,282 (Nguyen, Huey, Takagishi, Hideto) discloses a circuit for, first, generating an accurate reproduction of the output of a Class D amplifier for error-correction purposes, and then, second, comparing the reference signal to the original signal input to the amplifier for error-correcting purposes.
U.S. Pat. No. 5,815,102 (Melanson and Laurence) describes, besides other methods, a digital to analog (D/A) converter, including a delta sigma modulator, that may implement a correction factor in at least one of its feedback loops to compensate for the characteristics of the output data from the duty cycle demodulator.
SUMMARY OF THE INVENTION
A principal object of the invention is to compensate for pulse error of a Class-D power output stage. A basic requirement is to compensate for the variations in the supply voltage and similar dependencies.
A fundamental idea is to measure the real area of the output pulses, where the area is defined as the pulse duration multiplied by the pulse voltage amplitude, and to compare it with the ideal nominal pulse area. The pulse area error is estimated and fed back into the Sigma-Delta-Modulator, which then is producing a different pattern than it should do without feedback.
In accordance with the objectives of this invention, a circuit for compensating for the pulse area error in a Class-D Amplifier, comprises a unit to convert the PCM (Pulse Code Modulated) input into time control pulses, controlling an output power driver, typically an H-Bridge. Said H-Bridge drives voltage into an output load, like a loudspeaker. Further said circuit comprises an integrator for the output pulses, a unit to measure the integrated output pulse area and a unit calculating the difference between the measured (real) pulse area and a given ideal pulse area. This pulse area error is subtracted from said PCM (Pulse Code Modulated) input signal.
Key element of this invention is the “Pulse Area Compensation Function”, which calculates said real pulse area (voltage multiplied by time), compares said real pulse area with said ideal pulse area, then calculates the difference and feeds it into the Sigma Delta Modulator.
In accordance with the objectives of this invention, a method for compensating pulse area error in a Class-D Amplifier is implemented. First it converts the input stream of PCM pulses by the Sigma-Delta-Modulator into ideal H-Bridge control data pulses and applies them to the H-Bridge, which drives (switches) voltage to the output load (typically a loudspeaker). Then the real voltage pulses are measured at said H-Bridge output and the loudspeaker. Further, the real pulse area (voltage multiplied by time) is calculated and compared with the ideal pulse area, to determine the corresponding pulse area error. Said pulse area error is then subtracted from said PCM input signal at said Sigma Delta Modulator input.
In accordance with the objectives of this invention, a digital feedback circuit for compensating the pulse area error in a Class-D Amplifier is achieved. The circuit elements, building a “Pulse Area Compensation Function” may be distributed over several elements of the total Class-D Amplifier circuit. Said “Pulse Area Compensation Function” will comprise a circuit function to measure said integrated output pulse area, and a circuit function to calculate the difference between said measured (real) pulse area and a given ideal pulse area, which will then be subtracted from said PCM (Pulse Code Modulated) amplifier input signal.
In accordance with the objectives of this invention, said digital feedback circuit for compensating for the pulse area error in a Class-D Amplifier, building said “Pulse Area Compensation Function” might as well be combined as a single processing unit within said total Class-D Amplifier circuit. Said “Pulse Area Compensation Function” will again comprise a circuit function to measure said integrated output pulse area and a circuit function to calculate the difference between said measured (real) pulse area and a given ideal pulse area, which will then be subtracted from said PCM (Pulse Code Modulated) amplifier input signal.


REFERENCES:
patent: 6084450 (2000-07-01), Smith et al.
patent: 6373334 (2002-04-01), Melanson
patent: 6381154 (2002-04-01), Nguyen
patent: 2002/0084843 (2002-07-01), Ruha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Class-D amplifier with digital feedback does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Class-D amplifier with digital feedback, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Class-D amplifier with digital feedback will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252511

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.