Clamp-on gas flowmeter

Measuring and testing – Volume or rate of flow – By measuring vibrations or acoustic energy

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06681641

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention is directed to a method and device for measuring flow rate of gas; in particular, a device and method for measuring gas flow in a pipe using a non-intrusive clamp-on flowmeter.
2. Description of Related Art
Transit-time ultrasonic Gas flowmeters are well known.
FIG. 1
shows a conventional gas flowmeter wherein transducers are introduced directly into the gas via holes in the pipe wall. Since the pressure within the pipe is usually quite high, typically from several atmospheres to many hundreds of atmospheres, it is necessary to use a pressure seal around the transducers to prevent the escape of gas. Since the transducer itself must also withstand the pressure it must necessarily be rigid and of high density. Because sonic impedance is directly related to material density, i.e., Zs=material density times its sonic propagation velocity, the transducer/pipe interface presents a high sonic impedance, which is a mismatch to the low sonic impedance of gas. Accordingly, the efficiency of introducing sonic energy into gas is low. To overcome this inefficiency it is necessary to generate a substantial impulse at the emission surface of the transmit transducer
100
. This results in substantial energy in the transducer body that would preferentially enter the pipe wall of pipe
120
to which it is attached, via the pressure seal, since the high impedance of the transducer matches the impedance of the pipe wall.
Once this energy enters the pipe wall it will pass directly to the receive transducer
110
through the pipe wall. As compared to the gas signal amplitude received at the receive transducer
110
, the amplitude of the transmit energy is much higher, and the residence time in the pipe of the transmit energy is lengthy, as it reverberates between pipe wall discontinuities. Thus the much smaller gas receive signal amplitude is obscured. This makes detection of the effect of flow on the transit-time of the received gas signal difficult or impossible due to low signal to noise ratio.
In one solution, the inserted gas transducer is equipped with an internal means of dissipating the sonic energy not transmitted into the gas before it reaches the location of the transducer to pipe wall pressure seal. A combination of metallic and viscous elastomeric elements can be used to dissipate the sonic energy. The signal to noise ratio of hundreds to one, or even greater, can be achieved.
Generally, the operation of the conventional transit-time flowmeter includes a flow computer which by digitizing the received signal computes flow from the measured difference in upstream versus downstream transit-time, and the absolute measured transit-time, using well-known algorithms.
With the conventional transit-time flowmeter, a problem develops at high flow rates due to the fixed positions of the insert transducers in the pipe wall. The problem arises when the searchlight like “narrow” beam width is generated and injected into the flow path of the gas. Since the flow rate of gas can reach a high percentage of the propagation velocity of the gas itself, it can be appreciated that under these conditions, “blowing” of the sonic beam downstream from both the upstream and downstream transducers can result.
FIG. 2
illustrates such phenomenon. The normal beam transmitted from the transmit transducer
100
is “blown” downstream by the gas flow and the intended signal is not received by the receive transducer
110
. Thus, there is no position to place either transducer that will avoid the possibility of having the sonic beam miss either or both, except perhaps to mount them axially in-line. This results however in the upstream transducer affecting the flow profile and even altering the apparent velocity of the sonic beam in the path between transducers.
It is well known that clamp-on liquid flowmeters produce highly accurate measurements. One important difference in the circumstances that affect gas versus liquid flowmetering is the very low sonic impedance of the gas—as much as 100 times or more lower than the average liquid case. This results in a substantial reduction of the signal amplitude of the sonic energy that enters the gas medium from the pipe wall. Another difference is the significantly lower sonic propagation velocity of gas as compared to a typical liquid—about one-fifth of typical liquid velocity. This lower propagation velocity also results in a much larger refraction angle by which sonic energy emerges from the pipe wall to enter the gas, relative to that for liquid.
FIG. 3
illustrates the differences in refraction angles for gas and liquids. The gas sonic velocity is about 12,000 inches/second, while the liquid sonic velocity is about 60,000 inches/second, whereas the pipe wall sonic velocity is about 115,000 inches/second. This results in an angle from the normal of about 6 degrees for gas, versus as much as 26 degrees for liquid. This means that the sensitivity of flow detection is much smaller for gas than for liquid, in the ratio of the sine of these angles. However, the considerably higher flow rates common for gas as compared to liquid conveniently compensate for this fact.
In the conventional intrusive ultrasonic gas flowmeter, the design of the transducers prevents the entry of sonic energy into the pipe wall. But in the case of a clamp-on gas meter, it is essential to introduce a substantial sonic signal into the pipe wall, since it is the actual source of the sonic energy that enters the gas medium. Accordingly, a solution is to dissipate the remaining pipe wall sonic energy, the source of the gas signal, before the gas signal completes its path to the receive transducer through the gas. Fortunately, the velocity through the gas is very slow compared to the very high velocity of the sonic energy in the pipe wall. The typical ratio of these velocities is about 10:1.
If the transducers are clamped to an installed pipe which is very long between pipe wall discontinuities, such as flanges, then the transmit signal in the pipe wall will “leave the vicinity” and be absorbed, in the main, before it reflects from these flanges and obscure the very small gas signal.
FIG. 4A
shows reflection characteristics of noise amplitude versus distance of a direct wave in a spool.
FIG. 4B
shows reflection characteristics of undamped and a damped spool.
FIG. 4C
shows reflection characteristics of noise amplitude versus time of a direct wave.
FIG. 4D
shows reflection characteristics of noise amplitude versus time of an undamped and a damped spool. It can be seen that if the section of pipe is small, then an echo chamber is formed, and the original transmit sonic energy will be present at the location of the receive transducer when the gas signal arrives. Accordingly, for field mounted clamp-on gas flowmeters, it is recommended that the section of pipe on which the transducers are installed be long between discontinuities. The actual length required to obtain a designated level of performance, limited by signal to noise ratio, is shorter for higher pressure gas, which higher pressure serves to increase the amplitude of the gas signal.
But, since proving the calibration of a gas meter in the field is difficult at best, and is usually a practical impossibility, it is desired to fabricate a gas meter in the form of a spool. This permits it to be taken to a laboratory for calibration. But if it is necessary to make the spool long, as noted above, then this length makes it impractical to fabricate, calibrate, transport and install. Accordingly, it is desired to make the gas spool short. To accomplish this it is essential that a means be developed to dissipate the transmit sonic energy well before the gas signal arrives at the receive transducer.
SUMMARY OF THE INVENTION
A method and a device are provided for enabling the measurement of the flow rate of gas by use of a non-intrusive clamp-on transit-time ultrasonic flowmeter. The device and method utilize a wide beam transit-time transducer, in which its frequency matches the thickne

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Clamp-on gas flowmeter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Clamp-on gas flowmeter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Clamp-on gas flowmeter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3214198

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.