Joints and connections – Interfitted members – Clamped members
Reexamination Certificate
2001-04-16
2003-09-23
Browne, Lynne H. (Department: 3679)
Joints and connections
Interfitted members
Clamped members
C403S388000, C052S208000, C052S204630
Reexamination Certificate
active
06623203
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a clamp fitting for fastening glass plates with an outer and an inner clamp element that clamp the glass plate between them and a clamp bolt that can be connected with a substructure, which clamp bolt is supported elastically, to a limited extent, on the inner clamp element by means of a bush that surrounds the clamp bolt.
2. Background of the Invention
A device of the type described above is disclosed in Federal Republic of Germany Patent Application No. 197 13 678 A1. On this clamp fixture of the prior art, a clamp element on the inside of the building is connected to a bush that surrounds the clamp bolt, which bush is elastically supported by O-rings on a flange of the clamp element on the inside of the building. This support is primarily to absorb the stresses that are exerted on the glass plate after installation. However, the support also makes it possible to adjust the glass plate and/or the clamp elements that are enclosing the glass plate relative to the position of the clamp bolt that can be connected with the substructure if, in the realization of the prior art, a distance bolt that surrounds the clamp bolt is located at a variable angle with respect to the clamp element on the inside of the building. The result is a limited relative movement of the clamp element on the inside of the building with respect to the bolt shank of the clamp bolt in all six degrees of freedom.
The invention is based on the observation that glass plates, for example those used to cover facades, are fastened by means of a four-point bearing. It is thereby desirable to first connect the glass plate to the substructure by means of a fixed bearing point, whereby the other three bearing points must be equipped so that both construction tolerances as well as loads on the glass plate after installation caused by thermal stresses or wind pressure can be reliably absorbed. This capability necessarily requires a different configuration of the individual clamp fittings.
OBJECT OF THE INVENTION:
The object of the invention, taking the requirements described above into consideration, is to realize the individual clamp fittings for the four-point bearing so that essentially identical components can be used to the greatest possible extent to arrive at a solution that is economical and easy to install.
SUMMARY OF THE INVENTION:
The invention teaches that this object can be accomplished by a clamp fixture for fastening glass plates with an outer clamp element and an inner clamp element that clamp the glass plate between them and a clamp bolt that can be connected with a substructure, which clamp bolt is supported elastically, to a limited extent, on the inner clamp element by means of a bush that surrounds the clamp bolt, characterized by the fact that the inner clamp element (
6
), on the side facing the substructure, has a cylindrical receptacle space (
10
) to hold a bearing (
3
,
4
,
5
) that supports the clamp bolt (
8
) in the axial direction (Arrow Z), whereby the clamp bolt (
8
) can be supported optionally in the axial direction (Arrow Z) without play (fixed bearing), in a plane that intersects the center longitudinal axis (
11
) and in the axial direction (Arrow Z) with play (
12
,
13
) (friction bearing
4
), or with axial play (
14
) and play (
15
) on all sides in the peripheral direction (movable bearing
5
) in the bearing (
3
,
4
,
5
).
The present invention teaches that an inner clamping element, on the side facing the substructure, has a cylindrical receptacle space to hold a bearing that supports the clamping bolt in the axial direction, whereby the clamp bolt can be supported in the bearing optionally in the axial direction with no play, in a plane that intersects the center longitudinal axis and in the axial direction with play, or with axial play and peripheral play in all directions.
The invention teaches the use in all cases of a clamp element of essentially identical construction on the outside of the building and on the inside of the building. With the first partial characteristic, namely the realization of the bearing such that the clamp bolt can be supported in the bearing in the axial direction without play, a fixed bearing is created.
With the second partial characteristic, namely the support of the clamp bolt in the clamp element on the inside of the building in a plane that intersects the center longitudinal axis and in the axial direction with play, a vertical bearing or friction bearing is created which, even after installation, allows a movement of the clamp bolt with respect to the clamp bolt on the inside of the building in a plane.
With the third partial characteristic, namely the mounting of the clamp bolt in the clamp element on the inside of the building with axial play and peripheral play on all sides, a movable bearing is finally created that allows a movement of the pane with respect to the clamp fitting both in the horizontal and in the vertical direction, i.e. for example in an X plane or in a Y plane.
With the solution claimed by the invention, different degrees of freedom for the clamp bolt supported in the above mentioned bearing are created merely by slightly modifying the configuration of the bearing held by the inner clamp element, without requiring a modification to the clamp element on the inside of the building. Thus a tolerance compensation is possible both during installation as a result of manufacturing tolerances, and after installation as a result of stresses that act on the glass plate.
Additional characteristics of the invention are disclosed herein below in the features of the invention.
The invention teaches that the bearing is realized so that it has a compensating bush that surrounds the bolt shank of the clamp bolt without play and a spacer bush that surrounds the compensating bush, whereby the spacer bush has on its outside periphery a flange by means of which the bearing is supported elastically, to a limited extent, by elastic means, for example by O-rings on the inner clamping element. This support allows limited vertical adjustability, for example plus or minus two millimeters, even in the fixed bearing.
To achieve a fixed bearing, the invention teaches that the compensating bush is fixed in position in the axial direction on the spacer bush without play, whereby the compensating bush is supported on one hand on a collar of the spacer bush and on the other hand by means of a nut that is screwed onto the spacer bush with the compensating bush. To thereby substantially eliminate all play, a distance washer is located between the nut and the end surface of the spacer bush. Thus—apart from the support of the bearing by means of the O-rings described above, all movement of the clamp bolt with respect to the clamp element on the inside of the building is prevented.
The invention further teaches that the spacer bush has a recess or boring with a hole-like cross section, whereby the compensating bush is supported by means of an essentially oval or elliptical bush head on a collar of the spacer bush. In the fixed bearing described above, a displacement or travel of the clamp bolt in the slot-like recess of the compensating bush is reliably prevented by the axial clamping, while the invention further teaches that to achieve a friction bearing, there is axial play between the nut that is screwed to the compensating bush and the spacer bush. As a result of the omission of the axial clamping, the compensating bush can slide into the slot-like recess of the spacer bush even after installation, so that the result is a compensation capability in a plane that intersects the center longitudinal axis of the clamp bolt.
As will be explained in greater detail below with reference to the exemplary embodiment, this is achieved by omitting the above mentioned distance washer associated with the fixed bearing, so that the only constructive difference between the fixed bearing and the friction bearing or vertical bearing is the omission of the distance washer.
A slight constru
Kreyenborg Ralf
Schulte Dirk
Browne Lynne H.
Dorma GmbH + Co. KG
Garcia Ernesto
Nils H. Ljungman & Associates
LandOfFree
Clamp fitting for fastening glass plates does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Clamp fitting for fastening glass plates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Clamp fitting for fastening glass plates will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3068263