Clamp assembly for detachably clamping spring in...

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S462320, C235S462360

Reexamination Certificate

active

06616042

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to a scanning arrangement in a scanner operative for repetitively scanning indicia having parts of different light reflectivity, for example, bar code symbols and, more particularly, to operating such a scanning arrangement at high speeds in single or multi-axis scan patterns and, still more particularly, to a clamp assembly for detachably clamping a spring used for such high speed scanning.
2. Description of the Related Art
Various optical readers and optical scanners have been developed heretofore to optically read bar code symbols applied to objects in order to identify the object by optically reading the symbol thereon. The bar code symbol itself is a coded pattern comprised of a series of bars of various widths and spaced apart from one another to bound spaces of various widths, the bars and spaces having different light reflecting properties. The readers and scanners electro-optically decoded the coded patterns to multiple digit representations descriptive of the objects. Scanners of this general type have been disclosed, for example, in U.S. Pat. No. 4,251,798; No. 4,360,798; No. 4,369,361; No. 4,387,297; No. 4,593,186; No. 4,496,831; No. 4,409,470; No. 4,808,804; No. 4,816,661; No. 4,816,660; and No. 4,871,904, all of said patents having been assigned to the same assignee as the instant invention and being hereby incorporated herein by reference.
As disclosed in the above-identified patents and applications, a particularly advantageous embodiment of such a scanner resided, inter alia, in emitting a light beam, preferably a laser beam, emitted from a light source, preferably a gas laser or a laser diode, and in directing the laser beam to a symbol to be read. En route to the symbol, the laser beam was directed to, and reflected off, a light reflector of a scanning component. The scanning component moved the reflector in a cyclical fashion and caused the laser beam to repetitively scan the symbol. The symbol reflected the laser beam incident thereon. A portion of the incident light reflected off the symbol was collected and detected by a detector component, e.g., a photodiode, of the scanner. The photodiode had a field of view, and the detected light over the field of view was decoded by electrical decode circuitry into data descriptive of the symbol for subsequent processing. The cyclically movable reflector swept the laser beam across the symbol and/or swept the field of view during scanning.
U.S. Pat. No. 4,387,297 and No. 4,496,831 disclose a high-speed scanning component including an electric motor operative for reciprocatingly oscillating a reflector in opposite circumferential directions relative to an output shaft of the motor. Electrical power is continuously applied to the motor during scanning. The light beam which impinges on the light reflector is rapidly swept across a symbol to be scanned in a predetermined cyclical manner. The scanning component comprises at least one scan means for sweeping the symbol along a predetermined direction (X-axis) lengthwise thereof. The scanning component may also comprise another scan means for sweeping the symbol along a transverse direction (Y-axis) which is substantially orthogonal to the predetermined direction, to thereby generate a raster-type scan pattern over the symbol. In addition to a single scan line and the raster-type pattern, other types of scan patterns are also possible, such as, x-shaped, Lissajous, curvilinear (see U.S. Pat. No. 4,871,904), etc. For example, if the X and Y axis scanning motors are both driven such that the light reflectors are driven at a sinusoidally-varying rate of speed, then the scan pattern at the reference plane will be a Lissajous-type pattern for omni-directional scanning of the symbols. The use of two separate scanning motors and control means to produce the multi-axis and omni-directional scanning pattern increases material and labor costs as well as the amount of electrical power needed to operate the scanner. In addition, the relatively complicated motor shaft and bearing arrangements of the scanning components may result in a useful life that is inadequate for some applications. Furthermore, the scanning components disclosed in U.S. Pat. Nos. 4,387,297 and 4,496,831 are designed for miniature light reflectors and are not well suited for large scale reflectors.
SUMMARY OF THE INVENTION
OBJECTS OF THE INVENTION
It is a general object of this invention to advance the state of the art of scanners for reading indicia of different light reflectivity, particularly laser scanners for reading bar code symbols.
An additional object of this invention is to provide novel high-speed scanning elements and novel scanning methods of operation.
Yet another object of this invention is to conveniently generate single line, multi-line or omni-directional scan patterns with the same scanning elements.
A further object of this invention is to provide a scanning arrangement having an increased scan line amplitude.
It is another object of this invention to minimize the number of elements comprising the scanning component.
Another object of this invention is to increase the working lifetime of the scanning components.
Still another object of this invention is to employ a leaf spring to achieve high-speed scanning and to quickly and efficiently effect assembly and field-replacement of the spring.
FEATURES OF THE INVENTION
In keeping with these objects, and others which will become apparent hereinafter, this invention resides, briefly stated, in an arrangement for, and a method of, scanning indicia having parts of different light reflectivity by directing light in an outgoing path toward the indicia and by collecting reflected light returning in a return path from the indicia. This invention comprises a scanner component, e.g., a reflector, a light emitter, or a light receiver, supported by a holder in at least one of these paths, for angular oscillating movement in a single scan direction between a pair of scan end positions or, alternatively, in first and second scan directions between first and second pairs of scan end positions. A drive is provided for moving the component between the scan end positions.
In a preferred embodiment, the holder means is a planar leaf spring having opposite ends clamped and the scanner component is mounted on a central portion of the spring. The drive is comprised of a permanent magnet mounted to the holder and an electromagnetic coil for displacing the magnet in response to a driving signal. By energizing the nearby coil, the magnet and, in turn, the scanner component are oscillated, preferably at the resonant frequency of the component/magnet assembly.
In a further embodiment of the present invention, a two-dimensional scan pattern over the indicia is advantageously effected by a holder that is constructed for mounting the component for angular oscillating movement along first and second axes in response to a single drive.
At least one of the opposite spring ends is, and preferably both opposite ends of the spring are, detachably clamped for easy and rapid assembly and replacement. A fixed clamping portion for each spring end is integral with the holder. Each spring end is clamped between a respective detachable clamping portion and a respective fixed clamping portion. A resilient clamping element snaps over each pair of clamping portions at each spring end.
The novel features which are considered as characteristic of the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.


REFERENCES:
patent: 3612642 (1971-10-01), Dostal
patent: 4025203 (1977-05-01), Lee
patent: 4732440 (1988-03-01), Gadhok
patent: 4861125 (1989-08-01), Vaught
patent: 4902083 (1990-02-01), Wells
patent: 3-9056 (1991-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Clamp assembly for detachably clamping spring in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Clamp assembly for detachably clamping spring in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Clamp assembly for detachably clamping spring in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3036472

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.