Electricity: conductors and insulators – Anti-inductive structures – Conductor transposition
Reexamination Certificate
1997-10-31
2001-09-25
Reichard, Dean A. (Department: 2831)
Electricity: conductors and insulators
Anti-inductive structures
Conductor transposition
C277S920000
Reexamination Certificate
active
06294729
ABSTRACT:
TECHNICAL FIELD
The present invention relates to electromagnetic interference (“EMI”) shields and, more specifically, to an EMI shield manufactured from an electrically nonconductive material and clad with an electrically conductive layer.
BACKGROUND
During normal operation, electronic equipment generates undesirable electromagnetic energy that can interfere with the operation of proximately located electronic equipment due to EMI transmission by radiation and conduction. The electromagnetic energy can by of a wide range of wavelengths and frequencies. To minimize the problems associated with EMI, sources of undesirable electromagnetic energy may be shielded and electrically grounded. Shielding is designed to prevent both ingress and egress of electromagnetic energy relative to a housing or other enclosure in which the electronic equipment is disposed. Since such enclosures often include gaps or seams between adjacent access panels and around doors, effective shielding is difficult to attain because the gaps in the enclosure permit transference of EMI therethrough. Further, in the case of electrically conductive metal enclosures, these gaps can inhibit the beneficial Faraday Cage Effect by forming discontinuities in the conductivity of the enclosure which compromise the efficiency of the ground conduction path through the enclosure. Moreover, by presenting an electrical conductivity level at the gaps that is significantly different from that of the enclosure generally, the gaps can act as slot antennae, resulting in the enclosure itself becoming a secondary source of EMI.
Specialized EMI gaskets have been developed for use in gaps and around doors to provide a degree of EMI shielding while permitting operation of enclosure doors and access panels. To shield EMI effectively, the gasket should be capable of absorbing or reflecting EMI as well as establishing a continuous electrically conductive path across the gap in which the gasket is disposed. Conventional metallic gaskets manufactured from copper doped with beryllium are widely employed for EMI shielding due to their high level of electrical conductivity. Due to inherent electrical resistance in the gasket, however, a portion of the electromagnetic field being shielded induces a current in the gasket, requiring that the gasket form a part of an electrically conductive path for passing the induced current flow to ground. Failure to ground the gasket adequately could result in radiation of an electromagnetic field from a side of the gasket opposite the primary EMI field.
In addition to the desirable qualities of high conductivity and grounding capability, EMI gaskets should be elastically compliant to compensate for variable gap widths and door operation, yet tough to withstand repeated door closure without failing due to metal fatigue. EMI gaskets should also be configured to ensure intimate electrical contact with proximate structure while presenting minimal force resistance per unit length to door closure, as the total length of an EMI gasket to shield a large door can readily exceed several meters. It is also desirable that the gasket be resistant to galvanic corrosion which can occur when dissimilar metals are in contact with each other for extended periods of time. Low cost, ease of manufacture, and ease of installation are also desirable characteristics for achieving broad use and commercial success.
Conventional metallic EMI gaskets, often referred to as copper beryllium finger strips, include a plurality of cantilevered or bridged fingers that provide spring and wiping actions when compressed. Other types of EMI gaskets include closed-cell foam sponges having metallic wire mesh knitted thereover or metallized fabric bonded thereto. Metallic wire mesh may also be knitted over silicone tubing. Strips of rolled metallic wire mesh, without foam or tubing inserts, are also employed.
One problem with metallic finger strips is that to ensure a sufficiently low door closure force, the copper finger strips are made from thin stock, for example on the order of about 0.05 mm (0.002 inches) to about 0.15 mm (0.006 inches) in thickness. Accordingly, sizing of the finger strip uninstalled height and the width of the gap in which it is installed must be controlled to ensure adequate electrical contact when installed and loaded, yet prevent plastic deformation and resultant failure of the strip due to overcompression of the fingers. To enhance toughness, beryllium is added to the copper to form an alloy; however, the beryllium adds cost and is a concern since beryllium is carcinogenic. Due to their thinness, the finger strips are fragile and can fracture if mishandled or overstressed, resulting in thin sharp edges which are a safety hazard to installation and maintenance personnel. Finger strips are also expensive to manufacture, in part due to the costs associated with procuring and developing tooling for outfitting presses and rolling machines to form the complex contours required. Changes to the design of a finger strip to address production or performance problems require the purchase of new tooling and typically incur development costs associated with establishing a reliable, high yield manufacturing process.
Metallic mesh and mesh covered foam gaskets avoid many of the installation and safety disadvantages of finger strips; however, they can be relatively costly to produce due to the manufacturing controls required to realize acceptable production yields.
SUMMARY OF THE INVENTION
A metallized fabric clad polymer EMI shield overcomes many of the limitations and disadvantages of conventional EMI shields. One method of manufacturing a metallized fabric clad polymer shield for shielding EMI from passing through a seam between first and second electrically conductive bodies includes forming a base and a profile of an electrically nonconductive solid material in a predetermined configuration. The base is designed to secure the shield to the first body while the profile is designed to contact the second body. An electrically conductive layer is then disposed on at least part of the profile so as to be interdisposed between the profile and the second body upon installation of the shield in a suitable gap of an electronic enclosure. In one exemplary embodiment, the profile and base may be an extrusion of a polymer such as polyvinyl chloride (“PVC”), a thermoplastic resin, and the conductive layer may be a metallized fabric bonded to the profile by a heat sensitive glue. The forming and deposition processes may be separate or may be substantially contiguous. After extrusion and cooling of the profile and base, the metallized fabric may be bonded to the profile in a separate operation. Alternatively, by employing an in-line crosshead extrusion method, the polymer base and profile may be formed and immediately thereafter the metallized fabric applied as a thermally activated glue-backed tape. Resultant thermal energy in the extrusion activates the glue on the fabric side of the tape, bonding the metallized fabric to the profile. As a subsequent step in either manufacturing method, the profile may be divided into a plurality of independently flexible cantilevered or bridged fingers to compensate for variable gap width along the length of the gap.
Another embodiment for manufacturing a metallized fabric clad polymer EMI shield according to the invention includes disposing an electrically conductive layer on an electrically nonconductive solid sheet material and then forming the sheet into a base and a profile of a predetermined configuration. The sheet may be a polymer such as PVC, the conductive layer may be a metallized fabric bonded to the sheet by a thermally activated glue, and the profile and base may be formed by a thermal process such as thermoforming. As a subsequent step in the manufacturing method, the profile may be divided into a plurality of independently flexible cantilevered or bridged fingers.
According to certain embodiments of the invention, a metallized fabric clad polymer shield for shielding EMI from passing through a
Laird Technologies
Ngo Hung V
Reichard Dean A.
Testa Hurwitz & Thibeault LLP
LandOfFree
Clad polymer EMI shield does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Clad polymer EMI shield, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Clad polymer EMI shield will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2442248