Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1996-02-23
2003-02-04
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S476000
Reexamination Certificate
active
06516216
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods and apparatus for circumferential transillumination of junctions between anatomic structures of a living body to allow surgeons to identify these junctions and guide incisions during surgical procedures and more specifically assisting in locating and/or avoiding such junctions.
BACKGROUND OF THE INVENTION
Separating the cervix from the vagina during surgical procedures may be difficult. McCartney and Johnson (1995) reported on the use of a vaginal tube to separate the uterus from the vagina during laparoscopic hysterectomy which overcomes this difficulty by placing a wide bore plastic tube in the vagina to expose the cervico-vaginal junction and stretch the vaginal fornices. The stretched vagina falls away from the cervix as the surgeon attempts to locate the most distal aspect of the tube as it protrudes into the pelvic cavity. Palpation using an instrument during laparoscopy is frequently used to discover the distal aspect of the tube at which time the surgeon employs diathermy or other means to cut tissue overlying the tube. The protruding tube in the pelvic cavity presents a ridge which requires the surgeon to continually palpate the distal aspect of the tube in order to locate the cervico-vaginal junction and eventually to facilitate proper guidance of the incision. The procedure is difficult, time consuming and at times leads to problems.
OBJECTS OF THE INVENTION
It is an object of the present invention to provide a device which circumferentially transilluminates a junction between anatomic structures using visible light or infrared light or combination of visible and infrared light so as to precisely locate such junction and warn the surgeon of imminent approach thereto.
It is another object of the present invention to provide a method of precisely locating junctions or valves and the like whereby a surgeon can easily visualize and can either invade or avoid the transilluminated junction or valve.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
The present invention overcomes and eliminates the need for the surgeon to palpate the distal aspect of a vaginal tube by using light energy to circumferentially transilluminate the cervico-vaginal junction. Furthermore, the invention can employ the same emission-detection technology described in U.S. Pat. No. 5,423,321 entitled “Electronic Detection of Anatomic Passages Using An Infrared Emitting Catheter.” The patent provides for transillumination of passages using an infrared emitting catheter. In one embodiment described in the patent, ureteral identification is intended to assist the surgeon with the management of the ureters during laparoscopic and open surgical procedures. When coupled to an infrared illuminator and placed in the ureter, an emitting fiber emits infrared light. Infrared transillumination of the ureter is not visible to the human eye. Thus electronic detection of the transilluminated ureter is facilitated using either a video system that employs an infrared sensitive imaging system or audible system which emits an audible tone when an infrared sensitive detector probe senses infrared light.
The differences between the aforementioned art and the invention centers on circumferential transillumination of a junction compared to transillumination of a passage and the use of visible light with or without an infrared component. For example, the invention may employ the same emitting fiber described in the patent. The emitting segment of the emitting fiber is circumferentially bonded to the distal aspect of a cup or tube seated substantially in contact with the cervico-vaginal junction, thus resulting in the circumferential junctional transilluminator of the invention. Therefore, transferring light energy to the emitting fiber and the emitting segment at the distal aspect of the circumferential junctional transilluminator permits detection of the transilluminated junction using the same method and devices described in the patent. Visible light, however, may also be used as another energy band to transilluminate the junction, in which case the eye or a typical medical endoscopic camera, or a camera could be used to detect the junction.
No prior materials known to the applicants disclose the concept of employing visible or infrared light or a combination of both to circumferentially transilluminate junctions between living structures such as the cervico-vaginal junction.
The present invention is described as employed to precisely locate the cervico-vaginal junction to reduce the danger to this junction particularly during performance of a hysterectomy. The present invention, referred to as the CJT, and associated detection system of the present invention is not limited to such use, but this use is illustrative of the utility of the apparatus and method.
Light energy with or without a component of infrared light energy or infrared light energy with or without a component of visible light energy can be used to transilluminate the cervico-vaginal junction using the CJT. The infrared emission-detection technology of the '321 patent is currently in commercial use as the INFRAVISION Illuminator System with an application for ureteral identification and is readily applicable to the present invention. When the light energy emitter is coupled to the INFRAVISION IR Illuminator and placed in the ureter, the emitting fiber emits infrared light. Infrared transillumination of the ureter is not visible to the human eye. Detection of the transilluminated ureter is facilitated using either the INFRAVISION Imaging System or the INFRAVISION Detector Probe.
To combine the present invention with the art described in the patent requires the CJT to be coupled to the INFRAVISION IR Illuminator to provide modulated infrared light energy to transilluminate the cervico-vaginal junction. Since the human eye is not sensitive to infrared light energy, the INFRAVISION Imaging System and/or the INFRAVISION Detector Probe is used to locate the cervico-vaginal junction.
The INFRAVISION IR Illuminator consists of two electronic modules, a laser light source and light sensor housed in one unit. The INFRAVISION IR Illuminator is DC powered through an AC/DC power supply; is non-sterile; and reusable. The INFRAVISION IR Illuminator houses two variable 250 mW infrared laser diodes (laser light source); and has a photodetector and circuitry that is tuned to the modulation frequency and wavelength of the laser diodes (light sensor). The emitting fiber residing at the most distal aspect of the CJT is coupled to the INFRAVISION IR Illuminator which provides infrared light energy to transilluminate the junction. The INFRAVISION Imaging System consists of an infrared sensitive camera and camera control unit. The INFRAVISION Imaging System is sensitive to visible and infrared light, and is intended to detect the specific wavelength of the infrared transilluminated cervico-vaginal junction and display an image of the junction on a video monitor.
The CJT for the cervico-vaginal junction takes the form of a hollow cone with a narrow light emitting surface or edge at the base of the most distal aspect of the cone. The hollow cone is made preferably from plastic. Attached to the apex of the cone is a handle that facilitates introduction of the cone into the vaginal canal and which is used to press the base of the cone against the cervico-vaginal junction. The emitting fiber is housed in the handle and emerges at the apex of the cone and is secured to the edge of the base or most distal aspect of the cone. The light emitting segment diffuses light radially. The proximal end of the emitting fiber has an optical connector that couples to the infrared laser diodes of the INFPAVISION IR Illuminator. When the CJT is coupled to the INFRAVISION IR Illuminator and its distal end/aspect is placed against the cervico-vaginal junction, the CJT transilluminates the pelvic cavity.
For circumferential infrared transillumination of the cervico-vaginal junction, the CJT employed with the INFRAVISION Illumination System is
Feinberg Richard
Fontenot Mark G.
Vining Jim
Flynn, Theil, Boutell & Tanis, P.C.
Lateef Marvin M.
Shaw Shawna J
Stryker Corporation
LandOfFree
Circumferential transillumination of anatomic junctions... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Circumferential transillumination of anatomic junctions..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circumferential transillumination of anatomic junctions... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3116948