Circular cut-off saw blade

Stone working – Sawing – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S542000

Reexamination Certificate

active

06752141

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a circular saw blade.
BACKGROUND OF THE INVENTION
Diamond blades are used to cut a variety of hard, abrasive, difficult-to-cut materials, such as concrete, stone, asphalt, and brick. The cutting portion of the blade, called a “segment” is comprised of diamond abrasive grit particles held in place by a metallic matrix or “bond.” In use, the diamond abrasive grit particles act like tiny cutting points; they are forced through the material being cut by the power of the saw machine, causing fracture of the parent material which produces the cutting action. As the diamond abrasive particles do the work, they slowly wear away and become dull or fractured. For the blade to keep cutting, the bond material must also wear away to expose new diamond particles. If the bond and diamond are correctly designed and matched to the material being cut, the blade will continue to cut until the entire segment is worn away.
There are two primary performance measures for a diamond blade:
1. Life—how much cutting can be done before the segment is gone; measured in inch-feet or square inches of cut. Life will vary depending on the material being cut.
2. Speed of Cut—how quickly the blade moves through the material; measured in inch-feet per minute or square inches per minute. Speed of cut also varies with the material being cut.
Increased life is typically achieved by using a bond material that is more wear resistant and/or increasing the amount (concentration) of diamond grit. Increased speed of cut is typically achieved by using a “softer” or faster wearing bond material and/or decreasing the amount (concentration) of diamond grit. Thus these two performance requirements compete with each other—to get longer life one must give up speed of cut, and vice-versa. This trade-off is generally accepted by the industry. However, the invention is a break-through in that it achieves increased speed of cut without sacrificing life through the physical design of the blade geometry.
SUMMARY OF THE INVENTION
This invention includes the geometry and spacing of the slots and segments around the periphery of a circular cut-off saw blade. The slots are designed to produce maximum airflow and cooling of the saw in use. The segments are designed to work with the slots to maximize the airflow and cooling effect of the slots. This blade design is intended primarily for dry-cutting applications. It may also offer advantages for wet-cutting applications.
Design features of the slots include the curvature of the slot and the angle of the outer opening of the slot with respect to a radial line. The radius of curvature of the slots generally ranges from 1″ to 3″. The curvature of the slots is optimized to work with a specific combination of saw diameter, number of slots/segments, saw operating speed, and other design parameters to produce the maximum airflow and cooling. The curvature of the slot imparts more energy to the surrounding fluid (air) than does a straight slot.
The curvature and angle of the slots works with the rotation of the blade to produce outward airflow. There are many variations of the various parameters of the slot design. The slots may open to the periphery of the blade at an angle with respect to a radial line of from about 0° to about 30°. The center of curvature of the slots is preferably ahead of the leading edge of the sidewall relative to the correct direction of rotation of the saw blade, but is alternatively behind the leading edge. The direction of rotation works with the angle and curvature of the slots to produce outward airflow. This orientation of slots also produces a more stable blade during cutting. Other variations include the number of slots (preferably from 4-75); the width of the slots (preferably from about 0.125″ to about 0.250″); the depth/length of the slots (preferably from about 0.5″ to about 2″); the radius of curvature of the slots (preferably from about 1″ to about 3″); and the use of more than one slot configuration on the same blade (for example, a mixture of longer and shorter or narrower and wider slots).
In the preferred embodiment of the invention, the curvature of the slots is such that as the blade advances (rotates) into static air, the innermost portion of the slot advances first, and is curved so that the direction of the slot is close to parallel with the direction it is traveling relative to the air. The air flows into the slot to fill the vacuum that would otherwise occupy the slot. As the blade continues to advance, the angle of the slot gradually changes toward a more radial angle; and the air is accelerated in a progressively more radial direction. Finally, as the slot exits the steel, the direction of the slot is radial, and the direction of the air flow is nearly radial.
Of the total circumference of the blade, a portion is covered by segments and a portion is used by the slots. The segments are in contact with the workpiece; in the slot area there is no contact. The total contact area can be expressed as a portion or percentage of the total peripheral area. Typical contact area values are in the range of 80-90% (of the full circumference). Blades with a lower contact area (in the range of 80-85% or less) typically act “softer”, meaning that they cut faster and wear quicker, all other things being equal. Conversely, blades with a higher contact area (85-90% or above) typically act “harder”, meaning that they cut slower and wear faster. With the lower contact area, there is more power per square inch of cutting area applied by the machine; this results in higher load per abrasive particle, which makes that particle bite into the work-piece more, but it also causes the abrasive to wear and break-down faster.
The preferred configuration of the inventive blade is toward the low end of the “conventional” range on peripheral contact area—approximately 80%. By keeping the peripheral contact area toward the low end of the range, there is a good amount of room for slots. The bigger the slot, the more air it can move. However, if the slots are too big, the peripheral area is too low, and the blade will wear too quickly. The aim is to have enough area for good life, and also achieve fast cut. Accordingly, in one respect, the size of the slots is optimized to give the best blend of a large slot for air-flow combined with adequate peripheral contact area for blade life.
The length and curvature of the slot is also optimized to give the largest slot possible without reducing the strength and stiffness of the core below an acceptable level. Obviously, the more material that is removed by making the slot larger, the weaker and more flexible the core will become. The preferred inventive design is a compromise on size of the slot versus strength and stiffness of the core.
The number and size (length) of the segments is also optimized to give fast cut, with efficient flushing of fines, without inducing excessively fast wear or choppy cut. Standard segment lengths that are common in the diamond blade industry are 2 inches (50 mm) and 40 mm (1.575 inch), though a wide variety of segment lengths have been used. Shorter segments can be used to reduce the peripheral area and increase the speed of cut; the tradeoff is shorter blade life and a “choppy” cut if the slots between the segments are excessively large. The length of the segments of the preferred embodiment herein is 1.250 inches, which provides for a high number of segments to yield the correct peripheral area and slots that are big enough to give the desired airflow effect without being so large as to produce a choppy cut. Variations contemplate segments in the 1.000-1.500 inch length range.
The invention also includes cutting segments in which the angle on the end of the segments is aligned either with radii of the blade (i.e., straight-edged segments), or aligned with the angle of the slot at the periphery, so that the edges of the segment effectively continue the slot sidewalls. There can be from 4 to 75 segments, dependin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circular cut-off saw blade does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circular cut-off saw blade, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circular cut-off saw blade will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3364404

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.