Circuit having bus bars and junction box containing the circuit

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – Within distinct housing spaced from panel circuit arrangement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S949000, C174S07100B

Reexamination Certificate

active

06655968

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to an electrical circuit comprising bus bars, and to an electrical junction box having the circuit. The circuit and the junction box are applicable particularly in a vehicle.
2. Description of Related Art
Recently, rapid increase of the number of electrical and electronic component parts mounted on a vehicle has led to increase of the number of circuits to be accommodated in an electrical connection box and in particular a junction box for a vehicle. Thus, in forming branch circuits at high density, it is necessary to mount a large number of component parts in the junction box, which causes increase in number of manufacturing stages.
In a typical known junction box shown in
FIG. 7
, bus bars
5
A-
5
D are overlaid one upon another between an upper case part
2
and a lower case part
3
, with insulation plates
4
A-
4
E interposed between them. The upper case
2
has connector sockets
2
a
, relay sockets
2
b
, and fuse sockets
2
c
on which in use connectors
6
, relays
7
, and fuses
8
are respectively mounted. Terminals of the connectors
6
, the relays
7
, and the fuses
8
are connected to terminals
5
a
projecting from the bus bars directly or through relaying terminals. The lower case part
3
also has connector sockets
3
a
to connect connectors to terminals projecting from the bus bars.
In the junction box
1
, with the increase in the number of circuits, the area and the number of layers of the bus bars increase, and thus the junction box becomes large. In the case where the connector sockets, the relay sockets and the fuse sockets are mounted on both the upper and lower case parts, it is possible to make the area of the junction box smaller than in the case where these sockets are mounted on only the upper case part or the lower case part.
However, in the case where the sockets are mounted at vertically opposed positions of the upper and lower case parts, terminals bent from the bus bars abut or overlap on each other and thus cannot be moved or distributed. In this case, it is necessary to form terminals on bus bars of additional layers. The increase of number of the layers of the bus bars leads to the increase of the height of the junction box. That is, the junction box is necessarily large.
Further, the connectors, fuses and relays are connected to the bus bars disposed inside the junction box. Thus, when the specification of the connection between the internal circuit and the fuses as well as the relays is altered, it is necessary to alter the construction of the entire internal circuit. That is, the above-described junction box is incapable of easily permitting a circuit alteration.
It is possible to deal with the problem of the increase of the layers of the bus bars caused by the overlapping or abutting of the terminals formed on the bus bars, by separate disposition of the bus bars to be connected to the connectors, those to be connected to the fuses and those to be connected to the relays. Further, it is possible to make the junction box more easily adjustable to various kinds and grades of vehicles by separating the internal circuit of the junction box into a connector connection circuit, a relay connection circuit, and a fuse connection circuit serving as a connector module, a relay module, and a fuse module.
The overall required internal circuit can be constructed of bus bars of the connector module, the relay module, and the fuse module by joining them to each other. The bus bars can be joined to each other by welding together projections at the ends of bus bars by resistance welding or the like.
As the material for a bus bar circuit, mostly, tin-plated brass sheet having a thickness of 0.64 mm is used in consideration of favorable weldability and low cost. In connecting the bus bars to each other by resistance welding, it is possible to form a projection on a welding surface of one bus bar so that the two bus bars are welded to each other by projection welding which is a form of resistance welding. Thus it is conceivable to use tin-plated brass as the material for the bus bar of each module and connect the modules to each other by projection welding.
However, depending on the required specification of the junction box, a current value higher than a normal value (about 20 A) or a much higher current value (about 100 A) may be applied to the internal circuit of the junction box. In the case where the internal circuit to which high current should be applied is composed of bus bars made of a material having a low conductivity, the bus bars generate heat owing to the internal resistance of their material, when high current is applied. Consequently, the temperature inside the junction box rises, which leads to disadvantages. Brass, which is conventionally used as the material of the bus bar, has a conductivity less than 30%. Therefore, brass is unsuitable for a bus bar circuit to which an electric current having a value higher than the normal value should be applied. That is to say, a bus bar circuit made of brass is not reliable in its operation.
The generation of heat can be suppressed if a high-conductivity material is used for the bus bar. However, such a high-conductivity material generates little heat when power is applied during welding. Thus it is difficult to heat the high-conductivity material to a temperature necessary for melting when welding, so that sufficient welding strength is difficult to obtain. Therefore it is inappropriate to use such high-conductivity material for the bus bars when they are to be welded to each other.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a circuit, e.g. for an electrical junction box, containing bus bars in which the construction is particularly adapted to the current levels to be applied to the bus bars.
It is a further object to provide an electrical junction box containing bus bars, which can be of compact dimensions.
According to the present invention, there is provided an electrical circuit having two bus bars welded to each other at a weld, wherein a first one of the two bus bars is formed of a material having an electrical conductivity selected from (a) in the range of from about 10 to about 60% and (b) not less than about 60% and the second one of the two bus bars is formed of a material having an electrical conductivity of not less than about 60%, and wherein at least one of the bus bars is tin-plated and at the weld the bus bars are joined through a tin-plating layer.
In this specification, including the claims, electrical conductivity is expressed in %, according to IACS (IACS is the abbreviation for International Annealed Copper Standard, which relates the electrical conductivity of a metal or alloy to that of copper in percentage terms).
As described above, the bus bar circuit of the present invention in this aspect may be formed of a novel combination of materials welded to each other to allow the bus bar circuit to have performance complying with a specified current value required for the junction box. For example, in the case where a specified value of electric current to be applied to the junction box is higher than a normal value (e.g. about 20 A) but not higher than a high value (e.g. about 100 A), it is possible to form one bus bar of a material having a low conductivity and the other bus bar of a material having a high conductivity. In this case, it is possible to achieve a high conductivity of a part of the bus bar circuit and thus partly suppress the heat output in use due to electrical resistance, which allows reliability of the bus bar circuit to be secured. Further, because the low-conductivity material for one bus bar is inexpensive, it is possible to produce the bus bar circuit at a low cost by using the combination of the low-conductivity material and the high-conductivity material.
In the case where a specified value of electric current to be applied to the junction box is high, both bus bars welded together can be formed of high-conductivity materials. As described

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circuit having bus bars and junction box containing the circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circuit having bus bars and junction box containing the circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuit having bus bars and junction box containing the circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3103740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.