Circuit for reproducing data and apparatus for reading data...

Dynamic magnetic information storage or retrieval – Checking record characteristics or modifying recording...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S055000, C360S046000, C360S065000, C360S053000

Reexamination Certificate

active

06201651

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a circuit for reproducing data, and an apparatus for reading data out of a magnetic disc, and more particularly to such a circuit and such an apparatus both of which is capable of solving a problem that there occurs reproduction error due to fluctuation in a reproduction voltage while data is being reproduced by means of a magneto-resistance effect type head.
2. Description of the Related Art
A magneto-resistance effect type head is mounted on an apparatus for magnetically reproducing data, as a reproduction head. A magneto-resistance effect type head operates under such a principle as mentioned below. If a magnetization orientation varies, an electrical resistance of a magneto-resistance effect element accomplishing electromagnetic conversion also varies. Hence, by keeping a constant sense current to run through the magneto-resistance effect element, variation in a magnetization orientation in the magneto-resistance effect element can be detected as variation in a voltage.
An electrical resistance of a magneto-resistance effect element also varies, if a temperature of the magneto-resistance effect element varies. That is, a voltage for reproducing data varies not only by variation in a magnetization orientation, but also by variation in a temperature of a magneto-resistance effect element.
A temperature of a magneto-resistance effect element varies, for instance, when there is generated frictional heat because of contact between a magnetic recording medium and a magneto-resistance effect element, or when frictional heat generated due to contact between a magnetic recording medium and parts other than a magneto-resistance effect element transfers to a magneto-resistance effect element.
If a temperature of a magneto-resistance effect element varies, a voltage for reproducing data varies, resulting in that signals other than signals transmitted from a magnetic recording medium and indicative of a magnetic field profile are reflected on a waveform of a reproduced wave, which would cause reproduction errors.
A voltage used when a magnetic field is not applied to a magneto-resistance effect element from a magnetic recording medium is referred to as a base line. Since no signals are received in a magneto-resistance effect element, a voltage for reproducing data is kept constant. However, if a temperature of a magneto-resistance effect element varies, a voltage for reproducing data also varies even in a magneto-resistance effect element receiving no signals, resulting in fluctuation in a base line.
When a base line varies due to such fluctuation in a temperature, there has been conventionally employed a high-pass filter to compensate for such distortion, because a frequency of fluctuation in a base line is small.
A high-pass filter having a cut-off frequency which is as high as possible in the range that the cut-off frequency is smaller than a minimum recording frequency could have greater effect for suppressing fluctuation in a base line.
However, a high-pass filter having an excessively high cut-off frequency would be accompanied with a problem. The first reason is that a higher cut-off frequency would cause a reproduced wave to be distorted to a greater degree. The second and main reason is that since a cut-off frequency at which a reproduced wave is much distorted is dependent on a rotational frequency of a magnetic recording medium, a rotation radius (track location) of a magnetic recording medium on which a magnetic head makes slide movement, and so on, a cut-off frequency cannot be defined in a single value.
An optimal cut-off frequency has been conventionally determined in trial and error. However, as mentioned earlier, if a cut-off frequency is to be determined in trial and error, a cut-off frequency has to be altered each time a rotational frequency or a rotation radius of a magnetic recording medium varies. In addition, a cut-off frequency has to be altered in dependence on a tendency of fluctuation in a base line.
As mentioned earlier, a cut-off frequency of a high-pass filter used for suppressing fluctuation in a base line cannot be defined into a single frequency, and it is impossible to suppress base line fluctuation having a frequency higher than a cut-off frequency.
Hence, it is desired that a cut-off frequency is set as high as possible. However, if a cut-off frequency is set higher than a minimum frequency of a component of a signal transmitted from a magnetic recording medium, a reproduced signal would be removed, and/or a reproduced wave might be distorted.
Japanese Unexamined Utility Model Publication No. 5-85060 has suggested a circuit for processing signals, including a magneto-resistance effect type element. The circuit further includes a high-pass filter for compensating for a temperature characteristic of the magneto-resistance effect type element.
However, the Publication does not refer to a cut-off frequency of the high-pass filter, and hence, does not mention a problem of fluctuation in a base line.
Japanese Unexamined Patent Publication No. 8-87707 has suggested an apparatus for magnetically recording and reproducing data. The apparatus is comprised of a circuit for generating a rectangular wave signal in accordance with magnetization inversion occurring on a magnetic recording medium, and a subtracter for subtracting the thus generated rectangular wave signal from a reproduced signal to thereby remove base line shift noise. According to the apparatus, it is possible to remove base line shift noise generated by MR head, and thereby, reproduce data without noise.
SUMMARY OF THE INVENTION
In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a circuit for reproducing data, and an apparatus for reading data out of and writing data into a magnetic disc, both of which are capable of suppressing fluctuation in base line, and hence, obtaining a reproduced wave without reproduction error.
In one aspect of the invention, there is provided a circuit for reproducing data, used for a magneto-resistance effect type head, including a high-pass filter having a maximum cut-off frequency in the range that a solitary reproduced wave is not distorted.
In another aspect of the invention, there is provided an apparatus for reading data out of a magnetic disc, including a circuit for reproducing data, the circuit including a high-pass filter having a maximum cut-off frequency in the range that a solitary reproduced wave is not distorted.
It is preferable that the apparatus further includes a magnetic recording medium having a raised portion and a recessed portion on a surface thereof, the raised and recessed portion being alternately formed, an interval between a raised portion and an adjacent raised portion being defined in such a manner that fluctuation in a base line is removed.
It is preferable that the magnetic recording medium rotates at such a rotational frequency that fluctuation in a base line of a reproduced wave is removed.
It is preferable that a cut-off frequency f
1
of the high-pass filter is designed smaller than a frequency f
2
which is a maximum in the range that a reproduced wave passing through the high-pass filter is not distorted (f
1
<f
2
).
It is preferable that a relation among a cut-off frequency f1 of the high-pass filter in the unit of Hz, a relative peripheral speed V in the unit of meter per second between the magnetic recording medium and a magnetic head, and the interval in the unit of meter is defined as follows:
V/f
1
<T.
It is considered that fluctuation in a base line is concerned with a distance between a magnetic recording medium and an element for reproducing data, and fluctuation in such a distance is concerned with fluctuation in a temperature of a magneto-resistance effect element. Accordingly, it is presumed that an interval of fluctuation in the above-mentioned distance is concerned with an interval of fluctuation in a base line.
For instance, it would be possible to define an interval of f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circuit for reproducing data and apparatus for reading data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circuit for reproducing data and apparatus for reading data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuit for reproducing data and apparatus for reading data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2468888

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.