Circuit board mounting standoff and method of using same

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C248S231900, C411S510000, C174S16600R

Reexamination Certificate

active

06545878

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to connectors for joining items such as electronic circuit boards in a spaced relation, as well as methods of using such connectors.
BACKGROUND OF THE INVENTION
Electronic devices, such as personal computers, portable computers, diagnostic equipment or analyzers, testing devices, electronic games, remote controls, pocket computers, palms, and other devices are typically manufactured so that the device housing includes one or more electronic circuit boards. Such circuit boards are typically attached to the housing by one or more fasteners, such as screws or pins, which hold the circuit board in place. When more than one circuit board is included in a device, the circuit boards must be separated from each other to avoid interference and/or damage of the circuit boards. Such separation may be achieved by, for example, fasteners attached to separate portions of the housing.
Because of the rapid pace of improvements to electronic devices to electronic circuitry, it is often desirable to replace and/or upgrade a circuit board within an existing electronic device. To accomplish such a replacement and/or upgrade, the undesired circuit board must be removed from the device. This requires an assembler to remove the screws, pins, or other fasteners which mount the circuit boards into the device and/or separate the circuit boards from each other. Such activity can be time consuming, and it requires precise attention to the removal of very small parts.
For example, U.S. Pat. No. 3,836,703, to Coules, discloses a spacer support for a circuit board having a resiliently flexible means for securing the support to a chassis. This support requires that a person apply pressure to a very small portion of the support to remove it from the housing. U.S. Pat. No. 4,495,380, to Ryan, discloses a similar standoff having similar disadvantages. Similarly, U.S. Pat. No. 5,754,412, to Clavin, discloses a standoff connector for fastening two items in a spaced relation, where the connector includes a body having a central opening for receiving a stud. The stud has a shaft for positioning the stud within the central opening and a handle for rotating the stud. Thus, the stud must carefully be rotated and removed from the body in order to remove a plate, such as a circuit board, from its desired location.
If a standoff were available that allowed for easy, rapid insertion of the standoff into a housing of an electronic device, as well as easy, rapid insertion of a circuit board onto the standoff, assembly time would be significantly reduced and cost savings would result.
Accordingly, an improved standoff for joining two items, such as electronic circuit boards, in a spaced relation is needed.
SUMMARY OF THE INVENTION
It is therefore an advantage of the present invention to provide an improved standoff for joining two items, such as electronic circuit boards, in a spaced relation.
The above other features and advantages are achieved through a novel component mounting standoff as herein disclosed. In accordance with one embodiment of the present invention, a standoff connector for fastening a planar surface in a spaced relation with another item includes an elongated post having a first end, a second end, an outer surface, and a length. Two or more ribs are integrally mounted on the post. The ribs are arranged in a substantially symmetrical manner around the outer surface of the post, and project away from the post. Each rib has a substantially equal length, and the length of each rib is shorter than the length of the post. The ribs are also arranged so that a first tip is formed on the post between the ribs and the first end of the post, while a second tip is formed between the ribs and the second end of the post. At least two raised fingers are integrally mounted on the first tip of the post. The raised fingers are arranged in a substantially symmetrical manner around the outer surface, and the fingers are positioned to provide a first post dimension approximately equal to a dimension of an opening in a planar surface. Preferably, the first post dimension and the dimension of the opening in the planar surface are the diameter of a circle.
Optionally and preferably, in accordance with this embodiment, the raised fingers are resilient, and the first post dimension is slightly larger than the dimension of the opening when the raised fingers are in a relaxed position. The raised fingers engage the planar surface when inserted into the opening of the planar surface. Optionally, the standoff connector also includes at least two additional raised fingers integrally mounted on the second tip of the post. The additional raised fingers are also resilient and are arranged in a substantially symmetrical manner around the outer surface of the post. The additional raised fingers are positioned to provide a second post dimension that is slightly larger than a dimension of a receptacle in a housing of an electronic device when the additional raised fingers are in a relaxed position. The additional raised fingers engage the receptacle when inserted into the receptacle. As an alternate option, the additional raised fingers may be positioned to provide a second post dimension that is slightly larger than a dimension of a second opening of a second planar surface when the additional fingers are in a relaxed position. The additional raised fingers thus engage the second planar surface when inserted into the opening.
As additional options, the first end and/or the second end of the post may be tapered, and the standoff connector may be comprised of a plastic material.
In accordance with an alternate embodiment of the present invention, a standoff for supporting a circuit board in a fixed spatial relationship with at least one item includes an elongated trunk having a first tip, a second tip, and an outside surface. The first tip is sized to fit within an opening of a circuit board. The second tip is sized to fit within an opening of another item. Two or more wings are integrally mounted on the trunk and extend outwardly from the trunk. The wings are positioned at approximately equal distances apart from each other around the outside surface of the trunk. The wings have a length that is shorter than the length of the trunk. The wings are positioned so that no wing extends along the entire first tip or second tip of the trunk. At least one raised surface is integrally mounted on the first tip of the trunk. The raised surface is sized to fit within the opening of the circuit board. Optionally, the standoff further includes at least one additional raised surface integrally mounted on the second tip of the trunk. The additional raised surface or surfaces are sized to fit within the opening of the item.
Optionally, in accordance with this embodiment, the raised surface mounted on the first tip engages the circuit board when inserted into the opening of the circuit board. Also optionally, the additional raised surface mounted on the second tip engages the item when inserted into the opening of the item. As additional options, the first end and/or the second end may be tapered, and the connector may be comprised of a plastic material.
In accordance with an additional embodiment of the present invention, a method of mounting a circuit board in a housing includes inserting, into a first housing portion, one tip of a standoff that has two tips. The housing portion has at least one first receptacle, and the first tip is placed into the first receptacle. The method also includes placing, onto one of the tips of the standoff, a circuit board having an opening. The opening has a dimension that corresponds to a dimension of the corresponding tip. Such a dimension may be, for example, a diameter of a circle. The placement of the standoff is such that the corresponding tip enters the opening of the circuit board. The method also includes mounting, on the other tip of the standoff, a second housing portion. The second housing portion has at least one second receptacle, and the placing of the stando

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Circuit board mounting standoff and method of using same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Circuit board mounting standoff and method of using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuit board mounting standoff and method of using same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3049749

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.