Electricity: conductors and insulators – Anti-inductive structures – Conductor transposition
Reexamination Certificate
2001-07-17
2003-02-25
Ngo, Hung V. (Department: 2831)
Electricity: conductors and insulators
Anti-inductive structures
Conductor transposition
C361S796000, C361S800000
Reexamination Certificate
active
06525266
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to devices to minimize the causes and effects of electromagnetic interference. More particularly, the present invention relates to devices to ground printed circuit boards to the housings, chassis, containers, etc., in which they are installed so as to reduce the generation of electromagnetic interference waves by devices including such circuit boards.
2. Description of the Prior Art
Electromagnetic interference (EMI) is an electrical disturbance in an electronics-based system. EMI is caused by natural phenomena, such as lightning, by low-frequency waves emitted from electromechanical devices, such as motors, or by high-frequency waves emitted from integrated circuits and other electronic devices, such as routers. In the United States, the Federal Communications Commission sets limits on the EMI output of electronic devices. Other countries set their own limits on the EMI output of electronic devices. It is therefore necessary for anyone or any company involved in the fabrication, manufacture, and/or sale of electronic devices to comply with the limitations imposed. In particular, it is necessary to ensure that EMI emissions coming from electronic devices in use are at or below the levels imposed in particular jurisdictions.
Networking equipment including routers, bridges, and switches for example, is one group of electronic devices susceptible to, and capable of causing, EMI emissions. As a result, they are subject to EMI output limitations. Of course, there are many other electronic devices subject to such limitations. By their nature, networking devices generate substantial emission energy that must be managed. They typically include one or more printed circuit boards (PCB) that transfer electrical signals on such boards, among other PCBs, and across transmission media to other electronic equipment.
High frequency transmissions associated with the transfer of electrical signals in and across networking equipment can generate substantial flux if low-inductance current pathways are not provided. For this reason, it is common practice to provide EMI shielding to dissipate generated emissions (and additionally to reflect incoming emissions that may disrupt system operation). It is a relatively common practice to use the housing or chassis that retains the networking equipment as part of the shielding. Specifically, the chassis, which includes slots or board cages to retain a plurality of PCBs therein, provides a good platform to divert current associated with each PCB retained therein to ground.
As more electronic components are installed in the same available space on PCBs, and surface mount technology enabling component application on both sides of a PCB, the EMI shielding task has become greater. It is therefore desirable to have an EMI shielding system that is sufficiently robust to ensure that EMI output limitations continue to be met. It has been observed that the application of gasketing material to the chassis perimeter likely does not provide that robustness. It is also desirable to have an EMI shielding system that can be implemented without requiring modifications to the chassis itself, particularly when there is a desire to upgrade PCBs for installation in existing chassis. Further, it is desirable to have an EMI shielding system including conductor clips for grounding individual PCBs to the chassis, which conductor clips may be mounted to the PCB in an automated, rather than manual, manner for ease and accuracy of placement. Yet further, it is desirable to provide one or more such conductor clips that may be positioned in a variety of locations including on either surface of a PCB with a profile that minimizes the possibility of clip damage. An EMI shielding system including one or more conductor clips with the noted characteristics would be of advantage in the fabrication of electronic devices including, but not limited to, networking equipment.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an EMI shielding system that is sufficiently robust to ensure that EMI output limitations are met. It is also an object of the present invention to provide an EMI shielding system that can be implemented without requiring modifications to the chassis itself. Further, it is an object of the present invention to provide a conductor clip employed as part of the EMI shielding system for grounding individual PCBs to the chassis, which conductor clip is mountable using “pick-and-place” surface mount technology. Yet further, it is an object of the present invention to provide such a conductor clip positionable in a variety of locations including on either surface of a PCB with a profile that minimizes the possibility of clip damage.
These and other objects are achieved with the present invention, a conductor clip that is substantially mountable on the front side, the back side, or both sides of a PCB, preferably at its perimeter. The clip is further configured to permit installation of the modified PCB in a slot of a board mounting chassis so that each clip contacts at least the inner surface of the slot. The clip of the present invention thereby establishes a grounding pathway between the PCB and the chassis so as to enable dispersion of EMI waves generated by the circuitry associated with the PCB.
The clip is formed of a conductive material including, for example, a solderable combination of tin and lead, copper, beryllium-copper, or other suitable material well known to those having knowledge of EMI shielding materials. The clip includes a first contact section that interfaces with the side of the PCB to which it is applied, and a flexible or compressible second contact section that interfaces with the surface of a chassis slot or other structure suitable for current grounding. Optionally, the clip includes an edge interface flap that may be used to contact the edge of the PCB. The clip may be formed of individual sections joined together or, preferably, as a unitary component. The clip is surface mountable on the PCB with a low profile and the compressible section substantially ensures good contact with the chassis slot while minimizing the possibility of clip breakage. The clip is preferably configured with dimensions suitable to enable the automated placement and attachment of the clip to the PCB using existing automated surface mounting equipment.
REFERENCES:
patent: 5001297 (1991-03-01), Peregrim et al.
patent: 5638259 (1997-06-01), McCarthy et al.
patent: 6043991 (2000-03-01), Sorrentino
Devine John M.
Ferland William M.
Thornton Martin Q.
Wilson Edward J.
Caseiro Chris A.
Enterasys Networks Inc.
Ngo Hung V.
LandOfFree
Circuit-board mounted clip for electromagnetic interference... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Circuit-board mounted clip for electromagnetic interference..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circuit-board mounted clip for electromagnetic interference... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3169855