Cutting – Tool carrier or guide affixed to work during cutting – Entirely work supported
Reexamination Certificate
2003-02-26
2004-09-28
Peterson, Ken (Department: 3724)
Cutting
Tool carrier or guide affixed to work during cutting
Entirely work supported
C030S310000, C033S027031, C083S591000
Reexamination Certificate
active
06796211
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to processing thin sheets, and more particularly to apparatus that accurately cuts round pieces of material from a large sheet.
2. Description of the Prior Art
It is frequently desireable to cut circular pieces from a sheet of material. A well known way to cut circular pieces is with a scissors. However, in many cases, using a scissors is not acceptable. As one drawback, an outline of the circle must first be drawn on the material. For an accurate circle, another tool, such as a compass, is required. The point of the compass invariably penetrates the material, which is highly undesireable in many situations. Further, the edge of the cut piece is only as accurate as the skill of the person can make it by simultaneously manipulating the scissors and the sheet. In addition, the compass and scissors method is laborious and time-consuming.
To overcome the problems inherent with cutting circular pieces with a scissors, circle cutting punches have been developed. The cut pieces are very accurate, and high production is obtainable. On the other hand, the dies for circle punches are expensive, and a different die is required for each size piece.
Circle cutting machines are another solution to the problem of accurately cutting circles from a sheet of material. Some prior circle cutting machines included an annular metal base with a cross-piece, a handle rotatable in the base cross-piece, a cutting arm held in the handle, and a cutting element on the cutting arm. The cutting arm was normally adjustable to enable different size circles to be cut. The base was manually held tightly over a sheet of material at the proper location such that the circle to be cut was viewable through the inside of the base. Rotating the handle while pushing it toward the sheet caused the cutting element to travel in a circle and cut the desired piece from the sheet. Neil Enterprises, Inc. of Vernon Hills, Ill., and Badge Parts, Inc. of Milwaukee, Wis., are two sources of such circle cutting machines. A few prior circle cutting machines did not not have any capability of adjusting the cutting arm; a different machine was required for each size circle to be cut.
U.S. Pat. No. 4,426,781 shows a circle cutter for making paper disks that has a very limited adjustability of the cutting arm. The cutting arm is built into an annular ring that is guided for rotation in a base. Another variation of prior circle cutting machines employs a ring that is slideable over a central plunger. The ring holds an adjustable cutting arm. The plunger is pressed against a sheet of material, and the ring is rotated to cut a circular piece. An example of the ring and plunger type circle cutting machine is disclosed in U.S. Pat. No. Des. 409,630. A somewhat similar product is marketed under the designation “NT Circle Cutter C1500.” Another type of typical cutting machine is marketed by Neil Enterprises, Inc. under the trademark Creativety Cutter. That particular machine is adjustable to cut circular pieces ranging in size from approximately 2 ¼ inches to 7 ⅜ inches.
Despite the variety of prior circle cutting machines presently available, none is without limitations. A major problem with the prior machines was the difficulty in accurately positioning the machine on the sheet to be cut. In many applications, it was required to accurately cut around a pattern that was pre-printed on the sheet. The prior plunger and ring machines were especially difficult to center properly over the pattern to be cut. The plunger could smudge or smear the print on delicate materials such as photographs. Machines with annular bases and cross-pieces were also difficult to position, because the patterns were invariably smaller than the base. To assist in accurately positioning the machine on the pattern, a user sometimes bonded a piece of cardboard to the bottom of the base. The cardboard had a hole through it of the same diameter as the pattern. The cardboard served as a centering template that aided in accurately cutting the pattern. However, the cardboard had to be removed and a new cardboard bonded to the base for each size circle to be cut.
In another attempt to use a centering template, a loose piece of cardboard or similar material was inserted into an annular base from the top of the machine. It proved very difficult to manipulate the template past the base cross-piece and around the handle and cutting arm in order to properly seat it on a flange in the base. After the template finally was in place, it was spaced from the underlying sheet a distance equal to the thickness of the base flange. The distance between the template and the sheet introduced parallax, which reduced the accuracy of the centering process. Maneuvering the user's head and eyes to overcome the parallax required additional undesireable time and effort.
Another drawback of prior annular base and cutting arm machines was the difficulty in changing the cutting element when it had worn. In one prior machine, for example, the entire handle had to be disassembled from the base in order to change the cutting element. Moreover, a tool such as a screwdriver or wrench was needed for the disassembly and reassembly process. A related handicap was the difficulty in adjusting the cutting arm to the proper radius. In most cases, a trial and error procedure was required to set the proper cutting radius, and a tool was invariably needed.
In general, the prior circle cutting machines were cumbersome and time consuming to set up and operate. A need therefore exists for improvements in circle cutting machines.
SUMMARY OF THE INVENTION
In accordance with the present invention, a circle cutting machine cuts circular pieces from a sheet of material in a more efficient manner than was previously possible. This is accomplished by apparatus that includes interchangeable templates that are removeably installed from the bottom of the machine base.
The base is annular in shape, having an outer diameter, an inner diameter, and a wall. The base has a cross-beam with a center bearing that defines an axis of rotation. On the base bottom surface are a number of segments, each having an inside edge. The segments are separated from each other by circumferentially spaced gaps. The base bottom surface and the segments cooperate to define arcuate grooves having a diameter between the base inner and outer diameters.
The base center bearing receives a hollow shaft of a handle. On one end of the shaft is a crank with a hand knob. A handle spring between the crank and the base cross-beam biases the shaft to slide in an upward direction in the center bearing. On the shaft second end, on the opposite side of the base center bearing as the crank, is a cross-hole that slideingly holds a cutting arm. Upward sliding of the shaft in the center bearing is limited by contact of the cutting arm with the center bearing.
An adjuster is part of the machine handle. The adjuster includes a locking device inside the shaft that is capable of resiliently contacting the cutting arm. An adjuster knob is adjustable in the shaft to press the resilient locking device with greater or lesser force against the cutting arm. The cutting arm is free to slide in the shaft cross-hole when there is a weak force against the cutting arm. When a strong force is against the cutting arm, it is rigidly locked in place in the shaft. If desired, the cutting arm may have detents at selected locations on it.
On one end of the cutting arm is a cutting element such as a cutting wheel or a static blade. Normally, the cutting arm is inside the base wall between the cross-beam and the plane of the base bottom surface.
Another important feature of the invention is that the cutting element is very easily replaced when worn. For that purpose, the handle shaft has a relatively long length between the base center bearing and the crank. The handle is slideable in the center bearing against the handle spring a distance sufficient to locate the cutting arm completely below the plane
Cayen Donald
Peterson Ken
Tecre Co., Inc.
LandOfFree
Circle cutting machine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Circle cutting machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Circle cutting machine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3193992