Chromatic dispersion management for optical wavelength...

Optical: systems and elements – Deflection using a moving element – Using a periodically moving element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S199200, C359S199200, C359S199200, C385S024000, C385S123000

Reexamination Certificate

active

06317238

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the optical transmission of information and, more particularly, to a method and apparatus for compensating for chromatic dispersion and nonlinearity that accrue over optical fiber transmission systems.
BACKGROUND OF THE INVENTION
The availability of high performance optical amplifiers such as the Erbium-Doped Fiber-Amplifier (EDFA) has renewed interest in the use of wavelength division multiplexing (WDM) for optical transmission systems. In a WDM transmission system, two or more optical data carrying channels are combined onto a common path for transmission to a remote receiver. Typically, in a long-haul optical fiber system, the set of wavelength channels would be amplified simultaneously in an optical amplifier based repeater. The Erbium-Doped Fiber-Amplifier is particularly useful for this purpose because of its ability to amplify multiple wavelength channels without crosstalk penalty.
Typically, it is advantageous to operate long-haul transmission systems at high data rates per channel. For example, useful data rates include multiples of the Synchronous Digital Hierarchy (SDH) standard, i.e., 2.5 and 10 Gb/s. As the bit rates increase through the gigabit per second range, the optical powers launched into the transmission fiber need to approach 1 mW per channel. As was demonstrated by Bergano et al. (European Conference on Optical Communications, Brussels, Belgium, paper Th.A.3.1, Sep. 1995) the Non-Return-to-Zero (NRZ) transmission format is particularly useful for transmitting large amounts of data over optically amplified fiber paths. However, NRZ channels operating over long distances require sufficient control over the total amount of chromatic dispersion to ensure low dispersion penalties. Accordingly, the preferred transmission medium for such a system is dispersion shifted optical fibers.
Crosstalk, or the mixing of channels through the slight nonlinearity in the transmission fiber, may arise from the combination of long distance, low dispersion and high channel power. The transmission of many WDM channels over transoceanic distances may be limited by nonlinear interactions between channels, which in turn is affected by the amount of dispersion. This subject was reviewed by Forghieri et al. (“Fiber Nonlinearities and their Impact on Transmission Systems,” ch. 8,
Optical Fiber Telecommunications,
IIIA, Academic Press, 1997). As discussed in Forghieri et al., this problem may be overcome by a technique known as dispersion mapping, in which the generation of mixing products is reduced by offsetting the zero dispersion wavelength of the transmission fiber from the operating wavelengths of the transmitter. This technique employs a series of amplifier sections having dispersion shifted fiber spans with either positive or negative dispersion. The dispersion accumulates over multiple fiber spans of approximately 500 to 1000 km. The fiber spans of either positive or negative sign are followed by a dispersion-compensating fiber having dispersion of the opposite sign. This subsequent section of fiber is sufficient to reduce the average dispersion (averaged over the total length of the transmission system) substantially to zero. That is, a fiber of high negative (positive) dispersion permits compensation by a length of positive (negative) transmission fiber.
While the previously mentioned technique provides effective dispersion compensation, there is a need to better balance the competing factors of reducing the accumulated chromatic dispersion while also reducing nonlinear mixing.
SUMMARY OF THE INVENTION
In accordance with the present invention, a method and apparatus is provided for dispersion mapping that yields improved transmission performance for optical transmission systems by providing a more optimal balance between the reduction of both accumulated chromatic dispersion and nonlinear mixing. In particular, the chromatic dispersion is arranged on both a short length scale (within one amplification period) and a long length scale so that the average dispersion returns to zero. The dispersion management within one fiber span is arranged so that the magnitude of the dispersion is large in the section of the fiber span in which the optical power is large and is small in the section of the fiber span in which the optical power is small. This arrangement reduces both the amount of nonlinear mixing and the accumulated chromatic dispersion within the given fiber span.
After several sections of the dispersion tapered spans, a section of cable with the opposite sign of chromatic dispersion is used to return the accumulated dispersion back to zero.
In accordance with one embodiment of the invention, a WDM optical communication system is provided that includes a transmitter, a receiver, and an optical fiber transmission path that couples the transmitter to the receiver. The transmission path includes an optical fiber span having at least one optical amplifier therein. A dispersion compensator, which is disposed at an intermediate point along said optical fiber span, has a dispersion value that substantially compensates for dispersion in the optical fiber span at a prescribed wavelength. The optical fiber span has a nonuniform dispersion distribution and/or a nonuniform effective cross-sectional area along its length.


REFERENCES:
patent: 5138677 (1992-08-01), O'Shaughnessy et al.
patent: 5559910 (1996-09-01), Taga et al.
patent: 5613028 (1997-03-01), Antos et al.
patent: 5696614 (1997-12-01), Ishikawa et al.
patent: 5790292 (1998-08-01), Ostsuka et al.
patent: 6011638 (2000-01-01), Mamyshev et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chromatic dispersion management for optical wavelength... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chromatic dispersion management for optical wavelength..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chromatic dispersion management for optical wavelength... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2573514

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.