Chondrocyte media formulations and culture procedures

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Method of culturing cells in suspension

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435383, 435404, 435405, 435406, C12N 500

Patent

active

061501638

ABSTRACT:
One object of the present invention is based upon the development and use of a serum-free defined cell culture medium comprising a supplement mixture, a component mixture, a vitamin mixture, an inorganic salt mixture and amino acid mixture that avoids the problems inherent in the use of serum. In particular, the defined medium is useful in culturing fibroblasts, especially chondrocytes. Another object of the present invention is to claim a method of enhancing the differentiation of chondrocytes and enhancing the synthesis of a cartilage specific matrix using tumor growth factor beta (TGF-.beta.). Another object of the present invention is to claim a method of enhancing the differentiation of chondrocytes using the combination of TGF-.beta.and IGF.

REFERENCES:
patent: Re34090 (1992-10-01), Seyedin et al.
patent: Re35694 (1997-12-01), Seyedin et al.
patent: 4774228 (1988-09-01), Seyedin et al.
patent: 4774322 (1988-09-01), Seyedin et al.
patent: 4843063 (1989-06-01), Seyedin et al.
patent: 4983581 (1991-01-01), Antoniades et al.
patent: 5118667 (1992-06-01), Adams et al.
patent: 5206023 (1993-04-01), Hunziker
patent: 5256644 (1993-10-01), Antoniades et al.
patent: 5270300 (1993-12-01), Hunziker
patent: 5328844 (1994-07-01), Moore
patent: 5420243 (1995-05-01), Ogawa et al.
patent: 5842477 (1998-12-01), Naughton et al.
patent: 5908784 (1999-06-01), Johnstone et al.
International Search Report dated Nov. 13, 1997for corresponding PCT application PCT/US97/13140.
Adolphe, et al. "Cell Multiplication and Type II Collagen Production by Rabbit Articular Chondrocytes Cultivated in a Defined Medium," Experimental CEll Research 155: 527-536 (1984).
Jennings, Susan D. and Ham, Richard G., "Clonal Growth of Primary Cultures of Rabbit Ear Chondrocytes in a Lipid-supplemental Defined Medium," Experimental Cell Research, 145: 415-423 (1983).
Kato, et al., "A Serum-Free Medium Supplemented With Multiplication-Stimulating Activity (MSA) Supports Both Proliferation and Differentiation of Chondrocytes in Primary Culture," Experimental Cell Research, 125: 167-174 (1980).
Madsen, et al., "Growth Hormone Stimulates the Proliferation of Cultured Chondrocytes from Rabbit Ear and Rat Rib Growth Cartilage," Nature, 304: 545-547 (1983).
Quarto, et al., "Proliferation and Differentiation of Chondrocytes in Defined Culture Medium Effects of Systematic Factors," Bone, 17: 558/117 (1995).
Boumediene, et al., "Modulation of Rabbit Articular Chondrocyte (RAC) Proliferation by TGF-Beta Isoforms," Cell Prolif., 28: 221-234 (1995).
Trippel, Stephen, B., "Growth Factor Actions on Articular Cartilage," Journal of Rheumatology, 21: 129-132 (1995).
Burton-Wurster, Nancy and Lust, George, "Fibronectin and Proteoglycan Synthesis in Long TermCultures ofCartilage Explants in Ham's F12 Supplemented witih Insulin and Calcium: Effects of the Addiction of TGF-Beta," Archives of Biochemistry and Biophysics, 283: 27-33 (1990).
Binette, et al., "Expression of a Stable Articular Cartilage Phenotype without Evidence of Hypertrophy by Adult Human Articular Chondrocytes In Vitro," The Journal of Orhopaedic Research, 16: 207-216 (1998).
Jennings, Susan, D. and Ham, Richard, G., "Clonal Growth of Primary Cultures of Human Hyaline Chondrocytes in a Defined Medium," Cell Biology International Reports, 7: 149-159 (1983).
Adolphe, et al., "Cell Multiplication and Type II Collagen Production by Rabbit Articular Chondrocytes Cultivated in a Defined Medium," Experimental Cell Research, 155: 527-536 (1984).
Yeager, et al., "Synergistic Action of Transforming Growth Factor-Beta and Insulin-like Growth Factor-Beta Induces Expression of Type II Collagen and Aggrecan Genes in Adult Human Articular Chondrocytes," Experimental Cell Research, 237: 318-325 (1997).
Livne, "In Vitro Response of Articular Cartilage From Magure Mice to Human Transforming Growth Factor Beta," Acta Anat., 149: 185-194 (1994).
Morales, Teresa I., "Transforming Growth Factor-Beta and Insulin-like Growth Factor-1 Restore Proteoglycan Metabolism of Bovine Articular Cartilage After Depletion by Retinoic Acid," Archives of Biochemistry and Biophysics, 315: 190-198 (1994).
Tsukazaki, et al., "Effect of Tranforming Growth Factor-Beta on the Insulin-like Growth Factor-1 Autocrine/Paracrine Axis in Cultured Rat Articular Chondrocytes," Experimental Cell Research, 215: 9-16 (1994).
Inoue, et al., "Stimulation of Cartilage-Matrix Proteoglycan Synthesis by Morphologically Transformed Chondrocytes Grown in the Presence of Fibroblast Growth Factor and Transforming Growth Factor-Beta," Journal of Cellular Physiology, 138: 329-337 (1989).
Galera, et al., Effect of Tranforming Growth Factor-Beta1 (TGF-Beta1) on Matrix Synthesis by Monolayer Cultures of Rabbit Articular Chondrocytes during the Dedifferentiation Process, Experimental Cell Research, 200: 379-392 (1992).
Harrison, et al, "Transforming Growth Factor-Beta: Its Effect on Phenotype Reexpression by Dedifferentiated Chondrocytes on the Presence and Absence of Osteogenin," In Vitro Cell. Dev. Biol., 28A: 445-448 (1992).
Luyten, et al., "Insulin-like Growth Factors Maintain Steady-State Metabolism of Proteoglycans in Bovine Articular Cartilage Explants," Achives of Biochemistry and Biophysics, 267: 416-425 (1988).
Sah, et al., "Differential Effects of bFGF and IGF-1 on Matrix Metabolism in Calf and Adult Bovine Cartilage Explants," Archives of Biochemistry and Biophysics, 308: 137-147 (1994).
Sah, et al., "Differential Effects of Serum, Insulin-like Growth Factor-I, and Firboblast Growth Factor-2 on the Maintenance of Cartilage Physical Properties During Long Term Culture," Journal of Orthopaedic Research, 14: 44-52 (1996).
Verbruggen, et al., "Standardization of Nutrient Media for Isolated Human Articular Chondrocytes in Gelified Agarose Suspension Culture," Osteoarthritis and Cartilage, 3: 249-259 (1995).
Massague, et al., "Stimulation by Insulin-like Growth Factors is Required for Cellular Transformation by Type Beta Transforming Growth Factor," The Journal of Biological Chemistry, 260: 4551-4554, (1985).
Rosselot, et al., "Effect of Growth Hormone, Insulin-like Growth Factor I, Basic Fibroblast Growth Factor, and Transforming Growth Factor Beta on Cell Proliferation and Proteoglycan Synthesis by Avian Postembryonic Growth Plate Chondrocytes," Journal of Bone and Mineral Research, 9: 431-439 (1994).
Qingqing, Gong and Pitas, Robert E., "Synertistic Effects of Growth Factors on the Regulation of Smooth Muscle Cell Scavenger Receptor Activity," The Journal of Biological Chemistry, 270: 21672-21678 (1995).
Frazer, et al., "Studies on Type II Collagen and Aggrecan Production in Human Articular Chondrocytes In Vitro and Effects of Transforming Growth Factor-Beta and Interleukin-1Beta," Osteoarthritis and Cartilage, 2: 235-245 (1994).
Galera, et al., "Transforming Growth Factor-Beta1 (TGF-Beta1) Up-Regulation of Collagen Type II Primary Cultures of Rabbit Articular Chondrocytes (RAC) Involves Increased mRNA Levels Without Affecting mRNA Stability and Procollagen Processing," Journal of Cellular Physiology, 153: 598-606 (1992).
Butterwith, S.C. and Goddard, C., "Regulation of DNA Synthesis in Chicken Adipocyte Precursor Cells by Insulin-Like Growth Factors, Platelet-Derived Growth Factor and Transforming Growth Factor-Beta," Journal of Endocrinology, 131: 203-209 (1991).
Zimber, et al., "TGF-Beta Promotes the Growth of Bovine Chondrocytes in Monolayer Culture and the Formation of Cartilage Tissue on Three-Dimensional Scaffolds," Tissue Engineering, 1: 289-300 (1995).
van der Kraan, et al., "Differential Effect of Transforming Growth Factor Beta on Freshly Isolated and Cultured Articular Chondrocytes," The Journal of Rheumatology, 19: 140-145 (1992).
Tesch, G.H., et al, "Effects of Free and Bound Insulin-Like Growth Factors on Proteoglycan Metabolism in Articular Cartilage Explants," J. Orthop. Res., 10: 14-22 (1992).
Freshney, "Serum Free Media," Culture of Animal Cells, John Wiley & Sons, New York, 91-99 (1994).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chondrocyte media formulations and culture procedures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chondrocyte media formulations and culture procedures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chondrocyte media formulations and culture procedures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1255622

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.