Chondrocyte cell-lines

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Animal or plant cell

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S366000, C435S372000

Reexamination Certificate

active

06558664

ABSTRACT:

The invention relates to Chondrocytes and Chondrocyte Cell-Lines for use, particularly but not exclusively, for studying arthritic conditions.
In addition, the invention relates to chondrocytes which may be of particular advantage in the development of new biomaterials for use in replacing skeletal tissues such as hips and joints.
Arthritis is characterised by inflammation of the joints and thus an inflammation of cartilage tissue. Cartilage is made from materials secreted by cells, and specifically Chondrocytes, into extracellular space. Two of the most prominent materials to be secreted by cells are collagen and mucopolysaccharides. Mucopolysaccharides are large molecular weight sugar molecules comprising carbohydrate chains which exists as repeating disaccharides. One of the two sugars is always an amino sugar, either N-acetyl-glucosamine or N-acetyl-galactosamine. In most cases, mucopolysaccharides exist in combination with proteins and thus form proteoglycans.
Collagen is fibrous in structure whereas mucopolysaccharides are amorphous in appearance and extremely viscous and can thus occupy large volumes for a given weight of material. In many cases collagen and proteoglycans interact with one another to form a variety of extracellular structures. These structures appear to be self-organising; there is no evidence of enzymes or other materials which bring about their polymerisation, interaction or orientation. For example, a typical collagen proteoglycan found in cartilage may consist of a central filament of hyaluronic acid several micro meters long having bound thereto, at regular intervals, link proteins. Long core proteins bind to the link proteins and branching from the core proteins at regular intervals are mucopolysaccharides such as chondroitin sulphate and keratan sulphate. Thus extracellular matrix materials organise themselves to form cartilage.
Bone formation is characterised by calcification in the region of hypertrophic chondrocytes. Whilst vascular invasion is important for mineralisation in vivo, it is clear that initiation of calcification can be independent of vascularization, since hypertrophic chondrocytes can spontaneously mineralise their matrix in vitro in the absence of exogenous phosphate. However, adult articular cartilage does not normally calcify, except at its junction with subchondral bone where the calcification forms a characteristic tide-mark. It is therefore interesting to note that chondrocalcinosis, the pathological calcification of articular cartilage by calcium pyrophosphate, which occurs in different regions of articular and other cartilage, increases in prevalence with age and may be associated with osteoarthritis.
It therefore follows that understanding the mechanisms associated with osteoarthritis should involve an understanding of the mechanisms associated with calcification of articular cartilage. However, there are no cell models for this investigation. Rather, existing cell models employ the use of growth plate chondrocytes, that is to say chondrocytes which mineralise calcium in order to produce bone tissue. Using this chick cell model it has been possible to show that chick growth plate chondrocyte cell layers become mineralised in the presence of ascorbate or of beta-glycerophosphate (1). The effects of ascorbate are associated with an increase in the synthesis of alkaline phosphatase and type X collagen, though it is not clear if they are both essential for calcification to occur. Beta-glycerophosphate acts independently of regulation of these two molecules, presumably by providing a rich source of exogenous phosphate for nucleation. Other workers have developed a pellet culture system for rabbit growth plate chondrocytes in which there is synthesis of alkaline phosphatase and type X collagen as well as calcification in cultures with ascorbate (2). A separate study (3) suggests that the effects, of ascorbate may be species-specific, highlighting the need for a human chondrocyte model system if human disease processes are to be studied.
No studies to date have shown calcification of matrix in vitro by articular chondrocytes. Workers have compared rabbit articular and growth plate chondrocytes and found that in high-density cultures the growth plate chondrocytes produce alkaline phosphatase and incorporate calcium into the cell layers, whereas articular chondrocytes do not (4). However, two studies have demonstrated that chick (5) or human (6) articular chondrocytes can express type X collagen and alkaline phosphatase in long-term cultures, but, there is no evidence for calcification of cell layer matrix in either study.
Other workers have described in International Patent Application W09409118, the closest prior art, how a human chondrocyte cell-line can be produced by transfecting juvenile primary chondrocytes using an SV40 oncogene. The chondrocytes express Type II collagen a specific matter for articular chondrocytes. However, there is no reference to matrix calcification of matrix using these cell-lines.
It can therefore be seen that existing in vitro models of calcification rely on long-term cultures of animal growth plate chondrocytes. There is currently no model of human chondrocyte calcification.
We have surprisingly found that mature articular chondrocytes and immortalised articular chondrocyte cell-lines provide an extracellular matrix that rapidly calcifies. By the term mature, we mean chondrocytes from an elderly individual such as an individual of an age likely to development osteoarthritis such as, but not limited to, an individual over the age of 50, and more preferably 65. Or, alternatively, chondrocytes grown in vitro of functionally equivalent age.
Our finding therefore represents a valuable opportunity for the study of mechanisms associated with calcification of articular cartilage and also for the regulation of said calcification. We expect that our articular chondrocyte cell-lines will have both academic and commercial value in that they will not only facilitate a greater understanding of calcification that may be associated with the osteoarthritic condition but they will also serve as valuable tools for the development of therapeutic agents to treat such a condition.
We are unable to explain our findings but we speculate as follows. During development chondrocytes are typically committed to one of two lineages. The first concerns the production of bone and thus the differentiated chondrocytes mineralise calcium. The second lineage concerns the production of cartilage tissue and thus the differentiated chondrocytes do not mineralise calcium. It may be that there is some plasticity in the determination of lineage and, for example, this may be related to demethylation of DNA with ageing.
Thus as articular chondrocytes age the control mechanisms that prevent calcium mineralisation operate less effectively and surprisingly chondrocytes of the articular cartilage lineage actually mineralise calcium.
Our findings thus suggest that, contrary to previous expectations, it is possible to provide a human cell model for arthritis. The cell model can be provided using either mature or immortalised articular chondrocytes and ideally cell-lines pertaining thereto.
According to a first aspect of the invention there is therefore provided an articular chondrocyte which mineralises calcium.
Preferably there is provided a plurality of chondrocytes which are arranged in pellet form.
Preferably said chondrocyte and chondrocytes are derived from a mature individual, and ideally from such an individual suffering from or having a predisposition for arthritis. Alternatively, said chondrocyte and chondrocytes are of foetal origin and preferably human foetal origin. More preferably still said chondrocyte and chondrocytes are mature as herein defined.
Preferably further still there is provided cell-lines of such chondrocytes.
In preferred embodiments of the invention said cell-lines are of human origin and ideally comprise an oncogene and ideally a temperature sensitive oncogene so that at a first permissive temperature an active on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chondrocyte cell-lines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chondrocyte cell-lines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chondrocyte cell-lines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.