Chlorinated copper phthalocyanine pigments

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C540S137000, C540S138000

Reexamination Certificate

active

06794504

ABSTRACT:

The present invention relates to novel incipiently chlorinated copper phthalocyanine pigments having a chlorine content of 10 to 40% by weight that are characterized by a dispersion harshness ≦10 in LDPE.
The invention also relates to the preparation of these pigments and to their use for warp-free coloration of plastics.
As-synthesized organic pigments are generally not suitable for further use. Various methods have therefore been developed to transform these amorphous to microcrystalline crude pigments into a useful pigmentary state.
EP-A-909 795 discloses treating incipiently chlorinated (blue) copper phthalocyanine pigments with acidic aromatic organic solvents, such as nitrophenol and naphthol, at around 100° C. The essential feature of this process is the presence of separately prepared pigment derivatives. However, the pigments obtained in this process are difficult to incorporate into plastics because of their dispersion harshness.
DE-C-12 42 180 discloses thermally treating polyhalogenated (green) copper phthalocyanine pigments having a halogen content of not less than 49.5% by weight in nitrophenol at around 135° C. DE-C-15 69 639 discloses thermally treating polyhalogenated copper phthalocyanine pigments having a halogen content of not less than 48.4% by weight in naphthol at around 100° C. The two processes are carried out in an open system without further additives. As comparative experiments in EP-A-909 795 show for incipiently chlorinated copper phthalocyanine pigments, however, the solvent treatment at 100° C. in the absence of the pigment derivatives leads to weaker, dull pigments.
Organic pigments for plastics coloration have to have a number of properties. As well as the aforementioned dispersion softness, ie. ease of incorporation into plastics, high color strength and high fastnesses (eg. weather-, light- and migrationfastness) are essential properties. A further particular requirement relates to the coloration of high-volume injection moldings. This is where warping is a common recurrence. As the molding cools, it undergoes differential shrinkage in the various dimensions, which causes the molding to deform and can render it unusable. Warpage is caused by the presence of the pigment, which disrupts the crystallization of the plastic.
To counteract warp problems, various methods have been proposed for modifying the surface of the organic pigment. For instance, EP-A-621 306 describes a treatment with a low-temperature plasma. JP-A-124 039/1977, 121 845/1978 and 023 840/1983 derivatize copper phthalocyanine pigments for this purpose.
However, these methods are disadvantageous in that they are technically complicated or require the additional synthesis of pigment derivatives.
It is an object of the present invention to provide strong blue copper phthalocyanine pigments for warp-free coloration of plastics.
We have found that this object is achieved by incipiently chlorinated copper phthalocyanine pigments having a chlorine content of from 10 to 40% by weight that are characterized by a dispersion harshness ≦10 in LDPE.
The invention also provides a process for preparing these pigments, which comprises isolating as a water-moist filter cake the crude pigment obtained in the chlorination of copper phthalocyanine, optionally drying the crude pigment, mixing the water-moist or dried crude pigment with an acidic aromatic organic medium and heating this mixture in a closed system to 140-200° C. at from 1 to 7 bar and subsequently isolating the treated pigment in a conventional manner.
The invention lastly provides for the use of the pigments according to the invention for warp-free coloration of plastics.
The incipiently chlorinated copper phthalocyanine pigments of the invention have a chlorine content of from 10 to 40% by weight (which corresponds to about 2-10 chlorine atoms per molecule), preferably of from 10 to 30% by weight (which corresponds to about 2-6 chlorine atoms), particularly preferably of from 10 to 20% by weight (which corresponds to about 2-4 chlorine atoms).
They are notable for their color properties, especially their high color strength and brilliance, in particular also for their dispersion softness. Their dispersion harshness in LDPE (customary molecular weight range from 20,000 to 50,000, customary density range from 0.910 to 0.935 g/cm
3
) is ≦10.
They also provide warp-free coloration of plastics, which was unforeseeable, since dispersion softness and distortion resistance are contrary properties in that dispersion softness increases with increasing primary particle size, while distortion resistance usually decreases with increasing primary particle size, since larger pigment crystals cause more severe disruption to the crystallization of the plastic.
The pigments of the invention are advantageously obtainable by the process according to the invention.
The starting material is a crude pigment obtained by generally known chlorination of copper phthalocyanine. The reaction is preferably carried out with chlorine in a molten salt which generally includes aluminum chloride, for example an aluminum chloride/titanium tetrachloride melt and preferably an aluminum chloride/sodium chloride melt, or in chlorosulfonic acid, in which case the copper phthalocyanine used is preferably chlorine free, but may also already contain small amounts of chlorine (customarily<6% by weight). The copper phthalocyanine itself may have been prepared for example by reacting phthalic anhydride with urea or by cyclizing o-phthalonitrile, in either case in the presence of copper or copper salts.
The incipiently chlorinated crude pigment is customarily isolated by discharging the chlorination batch onto water and then filtering. Generally the filter cake obtained is washed with an aqueous inorganic base, eg. sodium hydroxide solution, to remove salt and residual acid.
The process of the invention subjects the incipiently chlorinated crude pigment to a hot treatment with an acidic aromatic organic medium. For this the crude pigment can be used after drying or advantageously as a water-moist filter cake.
The acidic aromatic organic medium is preferably a compound of the general formula I
where
X is hydroxyl or carboxyl. The benzene ring A may be substituted and/or benzofused; that is, preference is given to using phenol, substituted phenols, naphthols, substituted naphthols, benzoic acid, substituted benzoic acids, naphthoic acids and substituted naphthoic acids as the acidic organic medium.
The benzene ring A may bear up to 2 identical or different substituents selected from the group consisting of nitro, C
1-C
4
-alkyl, preferably C
1-C
2
-alkyl, C
2-C
4
-alkenyl, preferably C
2-C
3
-alkenyl, chlorine, bromine and carboxyl.
When X is carboxyl, the benzene ring A is preferably substituted by C
1-C
4
-alkyl or is unsubstituted.
When X is hydroxyl, the benzene ring A is preferably substituted by nitro.
Benzofused benzene rings A preferably bear no further substituents.
It will be appreciated that mixtures of different acidic organic compounds may also be used.
Examples of suitable acidic aromatic organic media are phenol, 2-, 3- and 4-nitrophenol, 2-, 3- and 4-methylphenol, 2-, 3- and 4-ethylphenol, 2-allylphenol, 2-, 3- and 4-bromophenol, 2,4-dibromophenol, 2,4-dichlorophenol, 2-chloro-6-nitrophenol, 2-chloro-4-nitrophenol, 2,4-dinitrophenol, 3-methyl-4-nitrophenol, 1- and 2-naphthol, 1-bromo-2-naphthol, benzoic acid, 2-, 3- and 4-methylbenzoic acid, 2-, 3- and 4-ethylbenzoic acid and 1- and 2-naphthoic acid, of which 1- and 2-naphthol are preferred and 2-nitrophenol is particularly preferred.
The amount of acidic organic medium used per g of crude pigment is generally in the range from 1 to 10 g, preferably in the range from 1.5 to 2.5 g. It will be appreciated that larger amounts of acidic medium could be used as well, although this would be uneconomical. In the case of smaller amounts of acidic medium, the mixture can be difficult to stir.
As mentioned above, the crude pigment may advantageously be used as a water-moist filter cake, which generally should

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chlorinated copper phthalocyanine pigments does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chlorinated copper phthalocyanine pigments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chlorinated copper phthalocyanine pigments will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263559

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.