Optical: systems and elements – Holographic system or element – Using a hologram as an optical element
Patent
1994-05-13
1996-09-03
Sikes, William L.
Optical: systems and elements
Holographic system or element
Using a hologram as an optical element
359 77, 359 87, 359100, G02F 11335, G02F 11337/1343, C09K 1902
Patent
active
055529127
DESCRIPTION:
BRIEF SUMMARY
FIELD OF THE INVENTION
The present invention relates to tunable electro-optical modulators having a folded optical path structure using chiral smectic liquid crystal materials as tuning elements and, in particular, relates to Fabry-Perot interferometer and etalon modulators.
BACKGROUND OF THE INVENTION
Liquid crystal devices operate on the basic principle that due to the dielectric anisotropy of nematic, cholesteric and smectic liquid crystals, the average molecular axis, or director, can be oriented in the presence of an applied electric field. The coupling of non-ferroelectric liquid crystals to the applied field is a weak, second order interaction. In general, slow response times are characteristic of non-ferroelectric, non-chiral, liquid crystal optical devices.
Meyer et al. ("Ferroelectric Liquid Crystals", in Le Journal de Physique, Vol. 36, March, 1975, pp. L69-L71) showed that chiral C* or H*, smectic liquid crystals, could be ferroelectric, that is, possess a permanent electric dipole density, P. This permanent polarization, P, is perpendicular to the average orientation of the long axis of the molecules (denoted by the molecular director, n,) and generally contained within a plane parallel to the smectic layers. In these chiral smectic liquid crystals (CSLCs), the molecular director makes a temperature dependent angle, .PSI., with respect to the layer normal, z, as shown in FIGS. 1 and 2. In general, .PSI. ranges from 0.degree. to 45.degree.. The presence of the electric dipole provides a much stronger coupling to the applied electric field as compared to non-ferroelectric liquid crystals. Furthermore, the coupling, and hence aligning torque is about linear with applied field. The significance of this is that changing the sign of the applied electric field will change the direction of P in smectic C*, H*, A* and other chiral smectic phase liquid crystals.
N. A. Clark et al. in U.S. Pat. No. 4,367,924, realized a ferroelectric liquid crystal switching device by sandwiching a thin layer of a smectic C* (SmC*) liquid crystal between two glass plates coated with transparent electrodes. In this patent, they describe the surface-stabilized ferroelectric liquid crystal (SSFLC) device, which employs SmC* or SmH* liquid crystal phases in the so-called bookshelf geometry, otherwise designated the planar alignment, where the smectic layers are perpendicular to and the liquid crystal molecules are parallel to the glass plates which also contain the electrodes, as illustrated in FIG. 1 (see also N. A. Clark et al. U.S. Pat. No. 4,563,059 and N. A. Clark and S. T. Lagerwall in Applied Phys. Letts. (1980) 36:899 and S. T. Lagerwall and I. Dahl Mol. Cryst. Liq. Cryst. (1984) 114:151-187). SSFLC SmC* materials have been shown to be useful in a number of electro-optic device applications including switches, shutters, displays and spatial light modulators (SLM's). The advantages of planar aligned chiral smectic C,F,G,H, and I liquid crystal devices is their nearly three orders of magnitude increase in switching speeds over non-chiral liquid crystal devices and their intrinsic bistability, which has applications for optical memory units.
Tristable switching of a planar-aligned CSLC cell has been reported (I. Nishiyama et al. (1989) Jpn. J. App. Phy. 28:L2248; and A. D. I. Chandani et al. (1988) Jpn. J. App. Phy. 27:L729). The third state of such tristable cells has been linked with the presence of an antiferroelectric phase, designated SmCA*. This type of CSLC cell has been designated an antiferroelectric LC cell. CSLC materials which can exhibit this antiferroelectric effect have been reported by K. Furukawa et al. (1988) Ferroelectrics 85:63; M. Johno et al. (1989) Jpn. J. App. Phy. 28:L119 and Y. Suzuki et al. (1989) Liq. Cryst. 6:167.
Lagerwall et al. in U.S. Pat. No. 4,838,663, describe a non-tilted, non-ferroelectric, chiral smectic A* (SmA*) liquid crystal electro-optic switch. With planar-aligned, surface-stabilized SmA* material between substrate walls with no electric field applied (zero field state),
REFERENCES:
patent: 4019807 (1977-04-01), Boswell et al.
patent: 4367924 (1983-01-01), Clark et al.
patent: 4762397 (1988-08-01), Pepper
patent: 4779959 (1988-10-01), Saunders
patent: 5033825 (1991-07-01), Ishikawa et al.
patent: 5381253 (1995-01-01), Sharp et al.
patent: 5493426 (1996-02-01), Johnson et al.
Soref, "Field Effects in nematic liquid crystals with interdigital electrodes," J. App. Phy., vol. 45, No. 12, Dec. 1974, pp. 5466-5468.
Hirabayashi et al., "New Structure of Tunable Wavelength-Selective Filters with a Liquid Crystal for FOW Systems", IEEE Photonics Technology Letters, vol. 3, No. 8, Aug. 1991, pp. 741-743.
Biemacki et al., "Polarization Dependence and Uniformity of FLC layers for Phase Modulation", Proceedings of the SPIE, SPIE Conference: Liquid Crystal Devices and Materials, San Jose, California, USA, Feb. 27, 1991, pp. 167-178.
Sharp et al., "Continuously Tunable Smetic A* liquid crystal color filter," Optical Society of America, vol. 15, No. 10, May 15, 1990, pp. 523-525
Garoff, S. and Meyer, R. B., "Electroclinic Effect on the A-C Phase Change in a Chiral Smectic Liquid Crystal," Phys. Rev. Let. (1977) 38(15):848-851.
Garoff, S. and Meyer, R. B., "Electroclinic effect at the A-C phase change in a chiral smectic liquid crystal," Phys Review A (1979) 19(1):338-347.
Brodzeli, Z. M. et al., "Optical Response of Homeotropically Aligned Ferroelectric Liquid Crystal," Tech. Digest on SLM's and Their Applications (1990) 14:128.
Ozaki, M. et al., "Electrooptic Effect in Homeotropically Aligned Ferroelectric Liquid Crystal," J. Applied Physics (1991) 9B:2366-2368.
Johnson Kristina M.
Sharp Gary D.
Board of Regents of the University of Colorado
Sikes William L.
Trice Ron
LandOfFree
Chiral smectic liquid crystal optical modulators does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chiral smectic liquid crystal optical modulators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chiral smectic liquid crystal optical modulators will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1955181