Electricity: electrical systems and devices – Miscellaneous
Patent
1982-10-22
1985-04-09
Hix, L. T.
Electricity: electrical systems and devices
Miscellaneous
29570, 361310, H01G 900, H01G 114, H01G 501
Patent
active
045105545
DESCRIPTION:
BRIEF SUMMARY
FIELD OF TECHNOLOGY
This invention relates to a chip-like solid electrolyte capacitor of the face-bonding type mold-encapsulated in insulative resin.
BACKGROUND OF THE INVENTION
Hitherto, this type of chip-like solid electrolyte capacitor has been formed by preparing a capacitor element formed by sequentially depositing a layer of semiconductor metal oxide such as manganese dioxide and a cathode layer made of carbon silver paint, on an anode which is a sintered body of a valve metal such as tantalum having an anode lead-out line, which is made of a valve metal such as tantalum, and also having a surface thereof provided with a dielectric oxidizing film, and then encapsulating this capacitor element in an electrically insulative resin. From this capacitor body extend an anode terminal, connected to the anode lead-out line, and a cathode terminal connected to the cathode layer.
Representative examples of conventional chip-like solid electrolyte capacitors are shown in FIGS. 1(a) and 1(b) and FIGS. 2(a) and 2(b). In FIGS. 1(a) and 1(b) is shown a capacitor element 1 mold-encapsulated in an insulative resin 2 to provide a capacitor body 3 and having a solderable anode terminal 4 connected by welding to an anode lead-out line 1a of the capacitor element 1 and a solderable cathode terminal 5 connected by soldering to an anode layer in the outer shell of the capacitor element 1. The terminals extend outwards from the bottom face of the capacitor body 3. In FIGS. 2(a) and (b) is shown a capacitor body with the anode terminal 4 and the cathode terminal 5 extending outwards from the opposite end faces of the capacitor body 3 and then bent so as to extend along the end face and bottom face.
When such a chip-like solid electrolyte capacitor is to be manufactured, manufacturing is carried out by steps such as shown in FIG. 3. FIG. 3 illustrates manufacturing steps for the manufacture of the chip-like solid electrolyte capacitor shown in FIGS. 1(a) and (b) and is a method which comprises perforating a lead frame 6 to provide two tongues 4' and 5' such as at step A, subsequently bending the tongues 4' and 5' to form the anode and cathode terminals 4 and 5 such as at step B, placing the capacitor element 1 on the anode and cathode terminals 4 and 5 such as at step C, connecting the anode lead-out line 1a and the cathode layer in the outer shell of the capacitor element 1 with the anode terminal 4 and the cathode terminal 5 such as at step D and simultaneously cutting the anode lead-out line 1a adjacent the capacitor element 1, mold-encapsulating the capacitor element 1, including portions of the anode and cathode terminals 4 and 5, with insulative resin 2 such as at step E, and separating the anode and cathode terminals 4 and 5 from the lead frame 6. It is to be noted that the capacitor element 1 is positioned on the lead frame 6 with the anode lead-out line 1a fixed by welding to a retainer plate 7.
However, in such a conventional chip-like solid electrolyte capacitor, in the construction as shown in FIGS. 1(a) and (b), there is a disadvantage in that both terminals of the anode and cathode terminals 4 and 5 extend outwardly from the capacitor body 3 and the overall dimensions are large and, also, it is not possible to apply the capacitor body to a substrate by a method other than a so-called reflow-soldering method wherein, after placing the capacitor body on a printed substrate, excess solder which has been attached by heating the printed substrate, is re-fused to effect the soldering. On the other hand, in the construction shown in FIGS. 2(a) and (b), since the anode and cathode terminals 4 and 5 are bent so as to extend along the end and bottom faces of the capacitor body 3, the overall size is small, but since the surface areas of the anode and cathode terminals 4 and 5 exposed to the end face of the capacitor body 3 are still small and the widths of these terminals are far smaller than the width of the capacitor body 3, incorporation onto the printed substrate can, as is the case with the former, only be effect
REFERENCES:
patent: 4288842 (1981-09-01), Voyles
Hix L. T,.
Lee Douglas S.
Matsushita Electric - Industrial Co., Ltd.
LandOfFree
Chip-like solid electrolyte capacitor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Chip-like solid electrolyte capacitor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chip-like solid electrolyte capacitor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1173284