Chip-card with mode switching between contactless and...

Registers – Records – Conductive

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S439000

Utility Patent

active

06168083

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a chip-card which can be coupled to an associated write-read station via contacts as well as via at least one antenna coil, the write-read station supplying the operating power for the chip-card via the coupling and the data exchange also taking place via this coupling, a rectifier being provided to supply power in the case of coupling via the antenna coil(s).
2. Description of the Related Art
A chip-card of this kind is known from DE-C-39 35 364. Chip-cards are highly integrated electronic units (chips) packed in a synthetic material with the format of a credit card. Depending on the relevant field of application, there are nowadays, for example electronic travel tickets, GSH cards, telephone cards and many others. In conformity with the field of application, the electronic units deviate from one another notably in respect of parameters such as storage capacity, access protection, data transmission rate, flexibility and transmission distance for contactless chip-cards.
Most chip-cards have a contact bank for the contact-coupled mode of operation. Lately, however, increasing numbers of contactless cards are used which feature notably a higher reliability, easier handling and better protection against vandalism for the associated contactless write-read stations. In the contactless mode, the transfer of power and clock signals to the electronic circuitry of the card, or the bidirectional data transmission, is realized via inductive coupling between the antenna of the write-read station and the antenna coil of the chip-card. The supply voltage for the chip-card is formed by rectification of an RP signal transmitted by the write-read station. In the contact-coupled mode of operation, the supply voltage, clock signals and data are conducted via separate contacts.
DE-C-39 35 364 already discloses a chip-card which can operate via contacts as well as via inductive coupling. The modes of operation can be activated at option and with full equality by using either a contactless or a contact-coupled write-read station.
According to DE-C-39 35 364 for this purpose there is provided a multiplexer which receives on the one hand the signals from the contacts of a contact bank and on the other hand the appropriately prepared signals from the coils (supply voltage, clock signals, data). A circuit of the type also provided in chip-cards constructed exclusively for operation in the contact-coupled mode is connected to the outputs of the multiplexer (for example, an arithmetic circuit and a storage unit). In order to define which signals are switched to the outputs by the multiplexer (the signals present on the contacts of the contact bank or the appropriately prepared signals received from the coils), there is provided a comparator which compares the DC voltage derived from the RF signal received from the coils with the DC voltage present on the contact bank.
It is a drawback of this circuit that the operating voltage is also conducted via the multiplexer in which inevitably a given voltage drop occurs. Therefore, the operation of this circuit will be poor in the fringe range (in the case of a large distance between the write-read station and the chip-card).
SUMMARY OF THE INVENTION
It is an object of the presert invention to provide a chip-card of the kind set forth in which the range in the contactless mode is equal to or only insignificantly shorter than in chip-cards which are suitable exclusively for contactless operation.
According to the invention, this object is achieved by means of a chip-card of the kind set forth in that the rectifier is connected directly to components requiring operating voltage, and that there is provided an AC recognition circuit for switching the chip-card between the two modes of operation “coupling via the contacts” and “coupling via the antenna coil(s)”.
Thus, the voltage generated in the rectifier is applied directly to the components requiring operating voltage, so that this full voltage is available as in the case of chip-cards which are suitable exclusively for the contactless mode of operation. Therefore, ignoring a slightly higher power consumption, the range is approximately the same as in chip-cards constructed exclusively for the contactless mode.
Due to this step, however, a mode-switching circuit of the kind provided in DE-C-39 35 364 is not possible; because the rectifier is connected directly to the components requiring operating voltage, it always carries a voltage, irrespective of whether it is supplied by the rectifier itself or by a contact of the contact bank. (This is not the case in the circuit known from DE-C-39 35 364, because the supply voltage is applied to the components requiring operating voltage via the multiplexer.) Therefore, according to the invention there is provided an AC recognition circuit (for example, in the form of an additional rectifier) for switching between the modes of operation. If this circuit recognizes an AC voltage on the antenna coil, the chip-card is switched to the contactless mode of operation (“coupling via the antenna coil(s)”) and otherwise to the contactcoupled mode of operation (“coupling via the contacts”).
As an alternative for the AC recognition circuit the contact supplying the supply voltage may be decoupled from the rectifier, for example by means of a diode, and a voltage recognition circuit may be connected to this contact in order to switch the chip-card between the two modes of operation “coupling via the contacts” and “coupling via the antenna coil(s)”. When this circuit detects a voltage on the contact, the chip-card is switched to the contact-coupled mode of operation (“coupling via the contacts”) and otherwise to the contactless mode of operation (“coupling via the antenna coil (s)”).
Thus, in the first case the mode of operation is governed by whether or not an AC voltaga is induced into the antenna coil whereas in the latter case it is governed by whether or not a DC voltage is present on the relevant contact. A combination of the two possibilities is also feasible.
Preferably, not more than one antenna coil is provided. A chip-card which is designed exclusively for contactless operation and does not require more than one antenna coil is described in AT-B-395 224. If the transmission system disclosed therein is used in the context of the present invention, the circuit will feature the minimum number of electronic components, being only one coil, one chip and one contact bank, and will also have interface switching which can be simply implemented from an integration point of view.
Preferably, the memory access authorizations can be configured differently in dependence on the modes of operation “coupling via the contacts” and “coupling via the antenna coil(s)”. There may notably be provided two memory sections which are alternatively activated in dependence on the modes of operation “coupling via the contacts” and “coupling via the antenna coil(s)”. Thus, one and the same card can perform two completely different functions in dependence on the mode of operation in which it is used (for example, electronic travel ticket in the contactless mode and telephone card in the contact-coupled mode).
In the mode “coupling via the antenna coil(s)” the circuit components which are not required in this mode are very advantageously controlled to a power-saving rest state in order to achieve a maximum transmission range. The range then equals that of a chip-card designed exclusively for the contactless mode.
When the chip is mounted on the underside of the contact bank and is connected, via two terminals, to a wound, etched or printed antenna coil embedded in the chip-card, a very large antenna coil can be used; this is beneficial for the range. A chip-card can be particularly simply manufactured, however, if the antenna coil is integrated with the chip. In that case it is again effective to mount the chip with integrated antenna underneath the contact bank. A compromise between simplicity of manufacture and size of t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chip-card with mode switching between contactless and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chip-card with mode switching between contactless and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chip-card with mode switching between contactless and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446040

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.