Chimeric proteins for use in transport of a selected...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S350000, C530S399000, C530S359000

Reexamination Certificate

active

06262026

ABSTRACT:

BACKGROUND OF THE INVENTION
The transport of molecules across cell membranes is an important component of the physiologic mechanisms that mediate homeostasis at the levels of the cell and the organism as a whole. Molecules that are used directly or indirectly in the assembly of cellular components are transported from the extracellular fluid into the cell, usually by the action of specific cell-surface receptors which bind to the selected substance and mediate its uptake into specific cell types. Many hormones, enzymes, and drugs which influence cellular activity are also transported into cells by specific cell-surface receptors. Furthermore, toxic molecules which are either produced in the body (i.e. through normal or defective metabolic pathways) or introduced by ingestion or exposure can be taken up and sequestered or metabolized by certain cells.
Removal of substances, both endogenously-produced and foreign substances, from extracellular fluids, such as blood or lymph, is often physiologically appropriate. However, in many instances, removal is impaired or occurs to a lesser extent than desirable and disease occurs. An example concerns LDL cholesterol, a naturally-occurring substance which must be removed at a controlled rate if abnormally elevated levels and the accompanying adverse effects are to be avoided. Hypercholesterolemia in humans is a condition characterized by elevated levels of total serum cholesterol. It is usually caused by an excess of low density lipoprotein (LDL) cholesterol or a deficiency of high density lipoprotein (HDL) cholesterol and often leads to atherosclerosis and coronary artery disease. LDL is continually formed in the blood from apolipoproteins produced by the liver. In order to maintain a steady-state level, LDL is removed from the blood at a rate equal to its formation. If LDL removal is impaired, the blood level of LDL increases and atherosclerosis is a greater risk. Atherosclerosis is by far the leading cause of death in the United States, accounting for over one-half of all deaths. (
Harrison's Principles of Internal Medicine,
Ed. J. D. Wilson et al., 12th ed., p. 995, McGraw-Hill, New York, 1991).
LDL particles carry approximately 60-70% of total serum cholesterol. LDL is a large spherical particle with an oily core composed of approximately 1500 cholesterol molecules, each of which is linked to a long-chain fatty acid by an ester linkage. Surrounding the core is a layer of phospholipid and unesterified cholesterol molecules, arranged in such a manner that the hydrophilic heads of the phospholipids are on the outside, and thus making it possible for the LDL to be dissolved in blood or intercellular fluid. Each LDL particle contains one molecule of Apolipoprotein B-100 (ApoB-100), a large protein molecule which is embedded in the hydrophilic coat of LDL. ApoB-100 is recognized and bound by the LDL receptor, which is present on the surfaces of cells. LDL bound to a LDL receptor is carried into the cell, in which the two are separated. The LDL receptor is recycled to the cell surface and the LDL is delivered to a lysosome. In the lysosome, LDL is processed to liberate unesterified cholesterol. The liberated cholesterol is incorporated into newly synthesized cellular membranes in all cells and, in specialized cells, is used for other purposes (e.g., steroid hormone synthesis, bile acid production).
The steady-state level of serum LDL is determined to a large extent by the number of functional hepatic LDL receptors (LDLRs), which play a central role in the removal of circulating LDL. (Brown, M. S. and Goldstein, J. L.,
Science,
232:34-47 (1986)) Individuals with familial hypercholesterolemia (FH) may be either heterozygous or homozygous for mutations leading to defective LDLRs and, as a result, these individuals have excess serum LDL. Other individuals who have elevated serum LDL levels may carry leaky or previously uncharacterized LDLR mutations or might be producing too much LDL due to elevated intake of dietary fat. Both FH and non-FH patients have elevated cardiovascular risk and could benefit from a therapy based on increasing the catabolism of LDL as a result of increased cellular uptake.
Thus, there exists a need to develop methods for increasing the uptake of selected substances into cells. These substances may be destined for catabolism as discussed above, or they may be designed to influence intracellular processes and thus be considered regulatory agents. Thus, cellular activity may be altered by introducing new regulatory agents which can alter specific intracellular processes into recipient cells. For example, cellular patterns of protein phosphorylation, expression of specific cellular genes, and cell growth properties may be altered by introduction of an appropriate regulatory agent into a cell. These regulatory agents may be proteins which have enzymatic activity or they may be proteins that bind specific cellular targets, targets which may be comprised of nucleic acid, protein, carbohydrate, lipid, or glycolipid.
SUMMARY OF THE INVENTION
Cell surface receptors provide a route for introducing selected substances into cells. The natural ligand of the receptor may be a portion of a chimeric protein in which the ligand domain is functionally linked to a protein domain that exerts a desired effect within a cell and is therapeutic in vivo. Alternatively, the protein domain may be bound to a selected substance which is to be removed from extracellular fluids for catabolism or other metabolic processing.
The present invention relates to chimeric proteins useful in transporting a selected substance present in extracellular fluids, such as blood or lymph, into cells; quantitative assays for the selected substance using chimeric proteins; DNA encoding the chimeric proteins; plasmids which contain DNA encoding the chimeric proteins; mammalian cells, modified to contain DNA encoding the chimeric proteins, which express and, optionally, secrete the chimeric proteins; a method of producing the chimeric proteins; a method of isolating the chimeric proteins; a method of using the chimeric proteins to assay the selected substance; and a method of reducing extracellular levels of the selected substance through administration of the chimeric protein, which results in transport of the selected substance into cells. The present invention also relates to a method of gene therapy, in which mammalian cells expressing and secreting the chimeric protein are implanted into an individual, in whom the chimeric protein is expressed and secreted and binds the selected substance. The resulting selected substance-chimeric protein complex is taken up into somatic cells and, as a result, the extracellular levels of the selected substance are reduced.
The selected substance can be a normally-occurring (endogenously produced) constituent of the blood, such as a nutrient, metabolite, naturally-occurring hormone or lipoprotein, or a foreign constituent, such as a pathogen, toxin, environmental contaminant or drug or pharmacologic agent. In either case, the selected substance is removed from the extracellular fluid, such as blood or lymph, by means of a chimeric protein which selectively binds the selected substance and also binds a cell surface receptor present on one or more types of somatic cells, particularly human somatic cells. The resulting chimeric protein-selected substance complex binds to the cell surface receptor and is transported into the cell, where it is sequestered or metabolized, resulting in reduced extracellular levels of the selected substance.
Chimeric proteins of the present invention include at least two components: a functional domain and a carrier domain. The functional domain comprises an amino acid (polypeptide) sequence which binds the selected substance to be transported into cells or contains a sequence which will affect the target cell in a specific way. The carrier domain comprises an amino acid (polypeptide) sequence which binds a cell surface receptor present on one or more types of somatic cells. The amino acid sequence

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chimeric proteins for use in transport of a selected... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chimeric proteins for use in transport of a selected..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chimeric proteins for use in transport of a selected... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488255

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.