Chimeric lyssavirus nucleic acids and polypeptides

Chemistry: molecular biology and microbiology – Vector – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091330, C435S091400

Reexamination Certificate

active

06673601

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to chimeric lyssavirus nucleic acids, and chimeric polypeptides and proteins encoded by these nucleic acids. More particularly, the invention relates to chimeric lyssavirus nucleic acids and proteins that can be used in immunogenic compositions, such as vaccines. Thus, the invention also relates to carrier molecules for expressing chimeric lyssavirus nucleic acids, methods of producing chimeric lyssavirus proteins and polypeptides, and methods of treating individuals to ameliorate, cure, or protect against lyssavirus infection. The compositions of the invention can also be used to express peptides, polypeptides, or proteins from organisms other than lyssaviruses. Thus, the invention provides methods of treating individuals to ameliorate, cure, or protect against many different infections, diseases, and disorders.
2. Background of the Related Art
Rabies is an encephalopathic disease caused by members of the Lyssavirus genus within the Rhabdoviridae family. Rabies infects all warm-blooded animals and is almost invariably fatal in humans if not treated. On the basis of nucleotide sequence comparisons and phylogenetic analyses, the Lyssavirus genus has been divided into 7 genotypes (GT). GT1 includes the classical rabies viruses and vaccine strains, whereas GT2 to GT7 correspond to rabies-related viruses including Lagos bat virus (GT2); Mokola virus (GT3); Duvenhage virus (GT4); European bat lyssavirus 1 (EBL-1: GT5); European bat lyssavirus 2 (EBL-2: GT6); and Australian bat lyssavirus (GT7).
Based on antigenicity, the Lyssavirus genus was first divided into four serotypes. More recently, this genus was divided into two principal groups according to the cross-reactivity of virus neutralizing antibody (VNAb): Group 1 consists of GT1, GT4, GT5, GT6, and GT7, while Group 2 consists of GT2 and GT3. Viruses of group 2 are not pathogenic when injected peripherally in mice. Virulence of lyssaviruses is dependent, at least in part, on the glycoprotein present in the viral coat. Interestingly, the glycoproteins of group 2 viruses show a high degree of identity, in the region containing amino acids that play a key role in pathogenicity, to the corresponding sequence of avirulent GT1 viruses (see, for example, Coulon et al., 1998, “An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro”,
J. Virol
. 72:273-278).
Rabies virus glycoprotein (G) is composed of a cytoplasmic domain, a transmembrane domain, and an ectodomain. The glycoprotein is a trimer, with the ectodomains exposed at the virus surface. The ectodomain is involved in the induction of both VNAb production and protection after vaccination, both pre- and post-exposure to the virus. Therefore, much attention has been focused on G in the development of rabies subunit vaccines. Structurally, G contains three regions, the amino-terminal (N-terminal) region, a “hinge” or “linker” region, and the carboxy-terminal (C-terminal) region. (See
FIG. 1.
)
As depicted in
FIG. 1
, it is generally thought that the glycoprotein (G) ectodomain has two major antigenic sites, site II and site III, which are recognized by about 72.5% (site II) and 24% (site III) of neutralizing monoclonal antibodies (MAb), respectively. The site II is located in the N-terminal half of the protein and the site III is located in the C-terminal half of the protein. The two halves are separated by a flexible hinge around the linear region (amino acid 253 to 257).
The G ectodomain further contains one minor site (site a), and several epitopes recognized by single MAbs (I: amino acid residue 231 is part of the epitope; V: residue 294 is part of the epitope, and VI: residue 264 is part of the epitope) (Benmansour et al., 1991, “Antigenicity of rabies virus glycoprotein”,
J. Virol
. 65:4198-4203; Dietzschold et al., 1990, “Structural and immunological characterization of a linear virus-neutralizing epitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine”,
J. Virol
. 64:3804-3809; Lafay et al., 1996, “Immunodominant epitopes defined by a yeast-expressed library of random fragments of the rabies virus glycoprotein map outside major antigenic sites”,
J. Gen. Virol
. 77:339-346; Lafon et al., 1983, “Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies”,
J. Gen. Virol
. 64:843-845). Site II is conformational and discontinuous (amino acid residues 34 to 42 and amino acid residues 198 to 200, which are associated by disulfide bridges), whereas site III is conformational and continuous (residues 330 to 338). Lysine 330 and arginine 333 in site III play a key role in neurovirulence and may be involved in the recognition of neuronal receptors (see, for example, Coulon et al., supra, and Tuffereau et al., 1998, “Neuronal cell surface molecules mediate specific binding to rabies virus glycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells”,
J. Virol
. 72:1085-1091). Sites II and III seem to be close to one another in the three dimensional structure and exposed at the surface of the protein (Gaudin, Y., 1997, “Folding of rabies virus glycoprotein: epitope acquisition and interaction with endoplasmic reticulum chaperones”,
J. Virol
. 71 :3742-3750). However, at low pH, the G molecule takes on a fusion-inactive conformation in which site II is not accessible to MAbs, whereas sites a and III remain more or less exposed (Gaudin, Y. et al., 1995, “Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G): G is transported in a fusion-inactive state-like conformation”,
J. Virol
. 69:5528-5533; Gaudin, Y., et al., 1991, “Reversible conformational changes and fusion activity of rabies virus glycoprotein”,
J. Virol
. 65:4853-4859).
Moreover, several regions distributed along the ectodomain are involved in the induction of T helper (Th) cells (MacFarlan, R. et al., 1984, “T cell responses to cleaved rabies virus glycoprotein and to synthetic peptides”,
J. Immunol
. 133:2748-2752; Wunner, W. et al, 1985, “Localization of immunogenic domains on the rabies virus glycoprotein”,
Ann. Inst. Pasteur
, 136 E:353-362). Based on these structural and immunological properties, it has been suggested that it the G molecule may contain two immunologically active parts, each potentially able to induce both VNAb and Th cells (Bahloul, C. et al, 1998, “DNA-based immunization for exploring the enlargement of immunological cross-reactivity against the lyssaviruses”,
Vaccine
16:417-425).
Currently available vaccines predominantly consist of, or are derived from, GT1 viruses, against which they give protection. Many vaccine strains are not effective against GT4, and none are effective against GT2 or GT3. However, the protection elicited against GT4 through 6 depends on the vaccine strain. For example, protection from the European bat lyssaviruses (GT5 and GT6), the isolation of which has become more frequent in recent years, by rabies vaccine strain PM (Pitman-Moore) is not robust. Strain PM induces a weaker protection against EBL1 (GT5) than the protection it provides against strain PV (Pasteur virus).
Because, in part, of the importance of rabies in world health, there is a continuing need to provide safe, effective, fast-acting vaccines and immunogenic compositions to treat and prevent this disease. Many approaches other than use of whole-virus preparations have been proposed and/or pursued to provide an effective, cost-efficient immunogenic composition specific for rabies viruses. For example, as discussed above, subunit vaccines have been developed. Also, vaccines that could generate an immune response to multiple rabies serotypes as well as various other pathogens has been proposed as having some value (European Commission COST/STD-3, 1996, “Advantages of combined vaccines”,
Vaccine
14:693-700). In fact, use of a combined vaccine of diphtheria, tetanus, whole cell pertussis, inactivated poliomyelitis, and rabies has recently been reported (Lang,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chimeric lyssavirus nucleic acids and polypeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chimeric lyssavirus nucleic acids and polypeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chimeric lyssavirus nucleic acids and polypeptides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3216606

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.