Chimeric genes and methods for increasing the lysine and...

Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S306000, C800S312000, C800S320100

Reexamination Certificate

active

06459019

ABSTRACT:

TECHNICAL FIELD
This invention relates to four chimeric genes, a first encoding lysine-insensitive aspartokinase (AK), which is operably linked to a plant chloroplast transit sequence, a second encoding lysine-insensitive dihydrodipicolinic acid synthase (DHDPS), which is operably linked to a plant chloroplast transit sequence, a third encoding a lysine-rich protein, and a fourth encoding a plant lysine ketoglutarate reductase, all operably linked to plant seed-specific regulatory sequences. Methods for their use to produce increased levels of lysine or threonine in the seeds of transformed plants are provided. Also provided are transformed plants wherein the seeds accumulate lysine or threonine to higher levels than untransformed plants.
BACKGROUND OF THE INVENTION
Human food and animal feed derived from many grains are deficient in some of the ten essential amino acids which are required in the animal diet. In corn (
Zea mays L.
), lysine is the most limiting amino acid for the dietary requirements of many animals. Soybean (
Glycine max L.
) meal is used as an additive to corn based animal feeds primarily as a lysine supplement. Thus an increase in the lysine content of either corn or soybean would reduce or eliminate the need to supplement mixed grain feeds with lysine produced via fermentation of microbes.
Plant breeders have long been interested in using naturally occuring variations to improve protein quality and quantity in crop plants. Maize lines containing higher than normal levels of lysine (70%) have been identified [Mertz et al. (1964)
Science
145:279, Mertz et al. (1965)
Science
150:1469-70]. However, these lines which incorporate a mutant gene, opaque-2, exhibit poor agronomic qualities (increased susceptibility to disease and pests, 8-14% reduction in yield, low kernel weight, slower drying, lower dry milling yield of flaking grits, and increased storage problems) and thus are not commercially useful [Deutscher (1978)
Adv. Exp. Medicine and Biology
105:281-300]. Quality Protein Maize (QPM) bred at CIMMYT using the opaque-2 and sugary-2 genes and associated modifiers has a hard endosperm and enriched levels of lysine and tryptophan in the kernels [Vasal, S. K., et al.
Proceedings of the
3
rd seed protein symposium
, Gatersleben, Aug. 31-Sep. 2, 1983]. However, the gene pools represented in the QPM lines are tropical and subtropical. Quality Protein Maize is a genetically complex trait and the existing lines are not easily adapted to the dent germplasm in use in the United States, preventing the adoption of QPM by corn breeders.
The amino acid content of seeds is determined primarily (90-99%) by the amino acid composition of the proteins in the seed and to a lesser extent (1-10%) by the free amino acid pools. The quantity of total protein in seeds varies from about 10% of the dry weight in cereals to 20-40% of the dry weight of legumes. Much of the protein-bound amino acids is contained in the seed storage proteins which are synthesized during seed development and which serve as a major nutrient reserve following germination. In many seeds the storage proteins account for 50% or more of the total protein.
To improve the amino acid composition of seeds genetic engineering technology is being used to isolate, and express genes for storage proteins in transgenic plants. For example, a gene from Brazil nut for a seed 2S albumin composed of 26% sulfur-containing amino acids has been isolated [Altenbach et al. (1987)
Plant Mol. Biol.
8:239-250] and expressed in the seeds of transformed tobacco under the control of the regulatory sequences from a bean phaseolin storage protein gene. The accumulation of the sulfur-rich protein in the tobacco seeds resulted in an up to 30% increase in the level of methionine in the seeds [Altenbach et al. (1989)
Plant Mol. Biol.
13:513-522]. However, no plant seed storage proteins similarly enriched in lysine relative to average lysine content of plant proteins have been identified to date, preventing this approach from being used to increase lysine.
An alternative approach is to increase the production and accumulation of specific free amino acids such as lysine via genetic engineering technology. However, little guidance is available on the control of the biosynthesis and metabolism of lysine in the seeds of plants.
Lysine, along with threonine, methionine and isoleucine, are amino acids derived from aspartate, and regulation of the biosynthesis of each member of this family is interconnected. Regulation of the metabolic flow in the pathway appears to be primarily via end products. The first step in the pathway is the phosphorylation of aspartate by the enzyme aspartokinase (AK), and this enzyme has been found to be an important target for regulation in many organisms. However, detailed physiological studies on the flux of 4-carbon molecules through the aspartate pathway have been carried out in the model plant system
Lemna paucicostata
[Giovanelli et al. (1989)
Plant Physiol.
90:1584-1599]. The authors state “These data now provide definitive evidence that the step catalyzed by aspartokinase is not normally an important site for regulation of the entry of 4-carbon units into the aspartate family of amino acids [in plants].”
The aspartate family pathway is also believed to be regulated at the branch-point reactions. For lysine this is the condensation of aspartyl &bgr;-semialdehyde with pyruvate catalyzed by dihydrodipicolinic acid synthase (DHDPS), while for threonine and methionine the reduction of aspartyl &bgr;-semialdehyde by homoserine dehydrogenase (HDH) followed by the phosphorylation of homoserine by homoserine kinase (HK) are important points of control.
The
E. coli
dapA gene encodes a DHDPS enzyme that is about 20-fold less sensitive to inhibition by lysine than than a typical plant DHDPS enzyme, e.g., wheat germ DHDPS. The
E. coli
dapA gene has been linked to the 35S promoter of Cauliflower Mosaic Virus and a plant chloroplast transit sequence. The chimeric gene was introduced into tobacco cells via transformation and shown to cause a substantial increase in free lysine levels in leaves [Glassman et al. (1989) PCT Patent Appl. PCT/US89/01309, Shaul et al. (1992)
Plant Jour.
2:203-209, Galili et al. (1992) EPO Patent Appl. 91119328.2]. However, the lysine content of the seeds was not increased in any of the transformed plants described in these studies. The same chimeric gene was also introduced into potato cells and lead to small increases in free lysine in leaves, roots and tubers of regenerated plants [Galili et al. (1992) EPO Patent Appl. 91119328.2, Perl et al. (1992)
Plant Mol. Biol.
19:815-823]. These workers have also reported on the introduction of an
E. coli
lysC gene that encodes a lysine-insensitive AK enzyme into tobacco cells via transformation [Galili et al. (1992) Eur. Patent Appl. 91119328.2; Shaul et al. (1992) Plant Physiol. 100:1157-1163]. Expression of the
E. coli
enzyme results in increases in the levels of free threonine in the leaves and seeds of transformed plants. Crosses of plants expressing
E. coli
DHDPS and AK resulted in progeny that accumulated more free lysine in leaves than the parental DHDPS plant, but less free threonine in leaves than the parental AK plant. No evidence for increased levels of free lysine in seeds was presented.
The limited understanding of the details of the regulation of the biosynthetic pathway in plants makes the application of genetic engineering technology, particularly to seeds, uncertain. There is little information available on the source of the aspartate-derived amino acids in seeds. It is not known, for example, whether they are synthesized in seeds, or transported to the seeds from leaves, or both, from most plants. In addition, free amino acids make up only a small fraction of the total amino acid content of seeds. Therefore, over-accumulation of free amino acids must be many-fold in order to significantly affect the total amino acid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chimeric genes and methods for increasing the lysine and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chimeric genes and methods for increasing the lysine and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chimeric genes and methods for increasing the lysine and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2934734

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.